Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfimafnf Structured version   Visualization version   GIF version

Theorem dfimafnf 29436
Description: Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Thierry Arnoux, 24-Apr-2017.)
Hypotheses
Ref Expression
dfimafnf.1 𝑥𝐴
dfimafnf.2 𝑥𝐹
Assertion
Ref Expression
dfimafnf ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem dfimafnf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssel 3597 . . . . . . 7 (𝐴 ⊆ dom 𝐹 → (𝑧𝐴𝑧 ∈ dom 𝐹))
2 eqcom 2629 . . . . . . . . 9 ((𝐹𝑧) = 𝑦𝑦 = (𝐹𝑧))
3 funbrfvb 6238 . . . . . . . . 9 ((Fun 𝐹𝑧 ∈ dom 𝐹) → ((𝐹𝑧) = 𝑦𝑧𝐹𝑦))
42, 3syl5bbr 274 . . . . . . . 8 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝑦 = (𝐹𝑧) ↔ 𝑧𝐹𝑦))
54ex 450 . . . . . . 7 (Fun 𝐹 → (𝑧 ∈ dom 𝐹 → (𝑦 = (𝐹𝑧) ↔ 𝑧𝐹𝑦)))
61, 5syl9r 78 . . . . . 6 (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑧𝐴 → (𝑦 = (𝐹𝑧) ↔ 𝑧𝐹𝑦))))
76imp31 448 . . . . 5 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑧𝐴) → (𝑦 = (𝐹𝑧) ↔ 𝑧𝐹𝑦))
87rexbidva 3049 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∃𝑧𝐴 𝑦 = (𝐹𝑧) ↔ ∃𝑧𝐴 𝑧𝐹𝑦))
98abbidv 2741 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = (𝐹𝑧)} = {𝑦 ∣ ∃𝑧𝐴 𝑧𝐹𝑦})
10 dfima2 5468 . . 3 (𝐹𝐴) = {𝑦 ∣ ∃𝑧𝐴 𝑧𝐹𝑦}
119, 10syl6reqr 2675 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑧𝐴 𝑦 = (𝐹𝑧)})
12 nfcv 2764 . . . 4 𝑧𝐴
13 dfimafnf.1 . . . 4 𝑥𝐴
14 dfimafnf.2 . . . . . 6 𝑥𝐹
15 nfcv 2764 . . . . . 6 𝑥𝑧
1614, 15nffv 6198 . . . . 5 𝑥(𝐹𝑧)
1716nfeq2 2780 . . . 4 𝑥 𝑦 = (𝐹𝑧)
18 nfv 1843 . . . 4 𝑧 𝑦 = (𝐹𝑥)
19 fveq2 6191 . . . . 5 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
2019eqeq2d 2632 . . . 4 (𝑧 = 𝑥 → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹𝑥)))
2112, 13, 17, 18, 20cbvrexf 3166 . . 3 (∃𝑧𝐴 𝑦 = (𝐹𝑧) ↔ ∃𝑥𝐴 𝑦 = (𝐹𝑥))
2221abbii 2739 . 2 {𝑦 ∣ ∃𝑧𝐴 𝑦 = (𝐹𝑧)} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
2311, 22syl6eq 2672 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wnfc 2751  wrex 2913  wss 3574   class class class wbr 4653  dom cdm 5114  cima 5117  Fun wfun 5882  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  funimass4f  29437
  Copyright terms: Public domain W3C validator