![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimag | Structured version Visualization version GIF version |
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.) |
Ref | Expression |
---|---|
elimag | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4657 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑥𝐵𝑦 ↔ 𝑥𝐵𝐴)) | |
2 | 1 | rexbidv 3052 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐶 𝑥𝐵𝑦 ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) |
3 | dfima2 5468 | . 2 ⊢ (𝐵 “ 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑥𝐵𝑦} | |
4 | 2, 3 | elab2g 3353 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 class class class wbr 4653 “ cima 5117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 |
This theorem is referenced by: elima 5471 fvelima 6248 opelco3 31678 fvelimad 39458 fvelima2 39475 afvelima 41247 |
Copyright terms: Public domain | W3C validator |