MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnfc2OLD Structured version   Visualization version   Unicode version

Theorem dfnfc2OLD 4455
Description: Obsolete proof of dfnfc2 4454 as of 26-Jul-2021. (Contributed by Mario Carneiro, 14-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dfnfc2OLD  |-  ( A. x  A  e.  V  ->  ( F/_ x A  <->  A. y F/ x  y  =  A ) )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    A( x)    V( x, y)

Proof of Theorem dfnfc2OLD
StepHypRef Expression
1 nfcvd 2765 . . . 4  |-  ( F/_ x A  ->  F/_ x
y )
2 id 22 . . . 4  |-  ( F/_ x A  ->  F/_ x A )
31, 2nfeqd 2772 . . 3  |-  ( F/_ x A  ->  F/ x  y  =  A )
43alrimiv 1855 . 2  |-  ( F/_ x A  ->  A. y F/ x  y  =  A )
5 simpr 477 . . . . . 6  |-  ( ( A. x  A  e.  V  /\  A. y F/ x  y  =  A )  ->  A. y F/ x  y  =  A )
6 df-nfc 2753 . . . . . . 7  |-  ( F/_ x { A }  <->  A. y F/ x  y  e.  { A } )
7 velsn 4193 . . . . . . . . 9  |-  ( y  e.  { A }  <->  y  =  A )
87nfbii 1778 . . . . . . . 8  |-  ( F/ x  y  e.  { A }  <->  F/ x  y  =  A )
98albii 1747 . . . . . . 7  |-  ( A. y F/ x  y  e. 
{ A }  <->  A. y F/ x  y  =  A )
106, 9bitri 264 . . . . . 6  |-  ( F/_ x { A }  <->  A. y F/ x  y  =  A )
115, 10sylibr 224 . . . . 5  |-  ( ( A. x  A  e.  V  /\  A. y F/ x  y  =  A )  ->  F/_ x { A } )
1211nfunid 4443 . . . 4  |-  ( ( A. x  A  e.  V  /\  A. y F/ x  y  =  A )  ->  F/_ x U. { A } )
13 nfa1 2028 . . . . . 6  |-  F/ x A. x  A  e.  V
14 nfnf1 2031 . . . . . . 7  |-  F/ x F/ x  y  =  A
1514nfal 2153 . . . . . 6  |-  F/ x A. y F/ x  y  =  A
1613, 15nfan 1828 . . . . 5  |-  F/ x
( A. x  A  e.  V  /\  A. y F/ x  y  =  A )
17 unisng 4452 . . . . . . 7  |-  ( A  e.  V  ->  U. { A }  =  A
)
1817sps 2055 . . . . . 6  |-  ( A. x  A  e.  V  ->  U. { A }  =  A )
1918adantr 481 . . . . 5  |-  ( ( A. x  A  e.  V  /\  A. y F/ x  y  =  A )  ->  U. { A }  =  A
)
2016, 19nfceqdf 2760 . . . 4  |-  ( ( A. x  A  e.  V  /\  A. y F/ x  y  =  A )  ->  ( F/_ x U. { A } 
<-> 
F/_ x A ) )
2112, 20mpbid 222 . . 3  |-  ( ( A. x  A  e.  V  /\  A. y F/ x  y  =  A )  ->  F/_ x A )
2221ex 450 . 2  |-  ( A. x  A  e.  V  ->  ( A. y F/ x  y  =  A  ->  F/_ x A ) )
234, 22impbid2 216 1  |-  ( A. x  A  e.  V  ->  ( F/_ x A  <->  A. y F/ x  y  =  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   {csn 4177   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180  df-uni 4437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator