| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfceqdf | Structured version Visualization version GIF version | ||
| Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfceqdf.1 | ⊢ Ⅎ𝑥𝜑 |
| nfceqdf.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| nfceqdf | ⊢ (𝜑 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfceqdf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfceqdf.2 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | eleq2d 2687 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 4 | 1, 3 | nfbidf 2092 | . . 3 ⊢ (𝜑 → (Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐵)) |
| 5 | 4 | albidv 1849 | . 2 ⊢ (𝜑 → (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵)) |
| 6 | df-nfc 2753 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 7 | df-nfc 2753 | . 2 ⊢ (Ⅎ𝑥𝐵 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) | |
| 8 | 5, 6, 7 | 3bitr4g 303 | 1 ⊢ (𝜑 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 = wceq 1483 Ⅎwnf 1708 ∈ wcel 1990 Ⅎwnfc 2751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nf 1710 df-cleq 2615 df-clel 2618 df-nfc 2753 |
| This theorem is referenced by: nfceqi 2761 nfopd 4419 dfnfc2 4454 dfnfc2OLD 4455 nfimad 5475 nffvd 6200 riotasv2d 34243 nfcxfrdf 34253 nfded 34254 nfded2 34255 nfunidALT2 34256 |
| Copyright terms: Public domain | W3C validator |