Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvalrelN Structured version   Visualization version   GIF version

Theorem dicvalrelN 36474
Description: The value of partial isomorphism C is a relation. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dicvalrel.h 𝐻 = (LHyp‘𝐾)
dicvalrel.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicvalrelN ((𝐾𝑉𝑊𝐻) → Rel (𝐼𝑋))

Proof of Theorem dicvalrelN
Dummy variables 𝑓 𝑔 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 5247 . . . 4 Rel {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}
2 eqid 2622 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
3 eqid 2622 . . . . . . . . . 10 (Atoms‘𝐾) = (Atoms‘𝐾)
4 dicvalrel.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
5 dicvalrel.i . . . . . . . . . 10 𝐼 = ((DIsoC‘𝐾)‘𝑊)
62, 3, 4, 5dicdmN 36473 . . . . . . . . 9 ((𝐾𝑉𝑊𝐻) → dom 𝐼 = {𝑝 ∈ (Atoms‘𝐾) ∣ ¬ 𝑝(le‘𝐾)𝑊})
76eleq2d 2687 . . . . . . . 8 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼𝑋 ∈ {𝑝 ∈ (Atoms‘𝐾) ∣ ¬ 𝑝(le‘𝐾)𝑊}))
8 breq1 4656 . . . . . . . . . 10 (𝑝 = 𝑋 → (𝑝(le‘𝐾)𝑊𝑋(le‘𝐾)𝑊))
98notbid 308 . . . . . . . . 9 (𝑝 = 𝑋 → (¬ 𝑝(le‘𝐾)𝑊 ↔ ¬ 𝑋(le‘𝐾)𝑊))
109elrab 3363 . . . . . . . 8 (𝑋 ∈ {𝑝 ∈ (Atoms‘𝐾) ∣ ¬ 𝑝(le‘𝐾)𝑊} ↔ (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊))
117, 10syl6bb 276 . . . . . . 7 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 ↔ (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊)))
1211biimpa 501 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊))
13 eqid 2622 . . . . . . 7 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
14 eqid 2622 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
15 eqid 2622 . . . . . . 7 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
162, 3, 4, 13, 14, 15, 5dicval 36465 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ (𝑋 ∈ (Atoms‘𝐾) ∧ ¬ 𝑋(le‘𝐾)𝑊)) → (𝐼𝑋) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
1712, 16syldan 487 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
1817releqd 5203 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (Rel (𝐼𝑋) ↔ Rel {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑋)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}))
191, 18mpbiri 248 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → Rel (𝐼𝑋))
2019ex 450 . 2 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋)))
21 rel0 5243 . . 3 Rel ∅
22 ndmfv 6218 . . . 4 𝑋 ∈ dom 𝐼 → (𝐼𝑋) = ∅)
2322releqd 5203 . . 3 𝑋 ∈ dom 𝐼 → (Rel (𝐼𝑋) ↔ Rel ∅))
2421, 23mpbiri 248 . 2 𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋))
2520, 24pm2.61d1 171 1 ((𝐾𝑉𝑊𝐻) → Rel (𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  c0 3915   class class class wbr 4653  {copab 4712  dom cdm 5114  Rel wrel 5119  cfv 5888  crio 6610  lecple 15948  occoc 15949  Atomscatm 34550  LHypclh 35270  LTrncltrn 35387  TEndoctendo 36040  DIsoCcdic 36461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-dic 36462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator