![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signstfvcl | Structured version Visualization version GIF version |
Description: Closure of the zero skipping sign in case the first letter is not zero. (Contributed by Thierry Arnoux, 10-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
Ref | Expression |
---|---|
signstfvcl | ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ∈ {-1, 1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 790 | . . . . 5 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹))) → 𝐹 ∈ (Word ℝ ∖ {∅})) | |
2 | 1 | eldifad 3586 | . . . 4 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹))) → 𝐹 ∈ Word ℝ) |
3 | signsv.p | . . . . 5 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
4 | signsv.w | . . . . 5 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
5 | signsv.t | . . . . 5 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
6 | signsv.v | . . . . 5 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
7 | 3, 4, 5, 6 | signstcl 30642 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ∈ {-1, 0, 1}) |
8 | 2, 7 | sylancom 701 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ∈ {-1, 0, 1}) |
9 | 3, 4, 5, 6 | signstfvneq0 30649 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ≠ 0) |
10 | eldifsn 4317 | . . 3 ⊢ (((𝑇‘𝐹)‘𝑁) ∈ ({-1, 0, 1} ∖ {0}) ↔ (((𝑇‘𝐹)‘𝑁) ∈ {-1, 0, 1} ∧ ((𝑇‘𝐹)‘𝑁) ≠ 0)) | |
11 | 8, 9, 10 | sylanbrc 698 | . 2 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ∈ ({-1, 0, 1} ∖ {0})) |
12 | tpcomb 4286 | . . . 4 ⊢ {-1, 0, 1} = {-1, 1, 0} | |
13 | 12 | difeq1i 3724 | . . 3 ⊢ ({-1, 0, 1} ∖ {0}) = ({-1, 1, 0} ∖ {0}) |
14 | neg1ne0 11126 | . . . 4 ⊢ -1 ≠ 0 | |
15 | ax-1ne0 10005 | . . . 4 ⊢ 1 ≠ 0 | |
16 | diftpsn3 4332 | . . . 4 ⊢ ((-1 ≠ 0 ∧ 1 ≠ 0) → ({-1, 1, 0} ∖ {0}) = {-1, 1}) | |
17 | 14, 15, 16 | mp2an 708 | . . 3 ⊢ ({-1, 1, 0} ∖ {0}) = {-1, 1} |
18 | 13, 17 | eqtri 2644 | . 2 ⊢ ({-1, 0, 1} ∖ {0}) = {-1, 1} |
19 | 11, 18 | syl6eleq 2711 | 1 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ∈ {-1, 1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∖ cdif 3571 ∅c0 3915 ifcif 4086 {csn 4177 {cpr 4179 {ctp 4181 〈cop 4183 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ℝcr 9935 0cc0 9936 1c1 9937 − cmin 10266 -cneg 10267 ...cfz 12326 ..^cfzo 12465 #chash 13117 Word cword 13291 sgncsgn 13826 Σcsu 14416 ndxcnx 15854 Basecbs 15857 +gcplusg 15941 Σg cgsu 16101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-word 13299 df-lsw 13300 df-concat 13301 df-s1 13302 df-substr 13303 df-sgn 13827 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-plusg 15954 df-0g 16102 df-gsum 16103 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mulg 17541 df-cntz 17750 |
This theorem is referenced by: signsvfn 30659 signlem0 30664 |
Copyright terms: Public domain | W3C validator |