| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > diftpsn3 | Structured version Visualization version Unicode version | ||
| Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| diftpsn3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjprsn 4250 |
. . . . 5
| |
| 2 | disj3 4021 |
. . . . 5
| |
| 3 | 1, 2 | sylib 208 |
. . . 4
|
| 4 | 3 | eqcomd 2628 |
. . 3
|
| 5 | difid 3948 |
. . . 4
| |
| 6 | 5 | a1i 11 |
. . 3
|
| 7 | 4, 6 | uneq12d 3768 |
. 2
|
| 8 | df-tp 4182 |
. . . 4
| |
| 9 | 8 | difeq1i 3724 |
. . 3
|
| 10 | difundir 3880 |
. . 3
| |
| 11 | 9, 10 | eqtr2i 2645 |
. 2
|
| 12 | un0 3967 |
. 2
| |
| 13 | 7, 11, 12 | 3eqtr3g 2679 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 df-tp 4182 |
| This theorem is referenced by: f13dfv 6530 nb3grprlem2 26283 cplgr3v 26331 frgr3v 27139 3vfriswmgr 27142 signswch 30638 signstfvcl 30650 |
| Copyright terms: Public domain | W3C validator |