MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diftpsn3 Structured version   Visualization version   Unicode version

Theorem diftpsn3 4332
Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
diftpsn3  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B ,  C }  \  { C } )  =  { A ,  B } )

Proof of Theorem diftpsn3
StepHypRef Expression
1 disjprsn 4250 . . . . 5  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B }  i^i  { C } )  =  (/) )
2 disj3 4021 . . . . 5  |-  ( ( { A ,  B }  i^i  { C }
)  =  (/)  <->  { A ,  B }  =  ( { A ,  B }  \  { C }
) )
31, 2sylib 208 . . . 4  |-  ( ( A  =/=  C  /\  B  =/=  C )  ->  { A ,  B }  =  ( { A ,  B }  \  { C } ) )
43eqcomd 2628 . . 3  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B }  \  { C } )  =  { A ,  B }
)
5 difid 3948 . . . 4  |-  ( { C }  \  { C } )  =  (/)
65a1i 11 . . 3  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { C }  \  { C } )  =  (/) )
74, 6uneq12d 3768 . 2  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A ,  B }  \  { C } )  u.  ( { C }  \  { C } ) )  =  ( { A ,  B }  u.  (/) ) )
8 df-tp 4182 . . . 4  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
98difeq1i 3724 . . 3  |-  ( { A ,  B ,  C }  \  { C } )  =  ( ( { A ,  B }  u.  { C } )  \  { C } )
10 difundir 3880 . . 3  |-  ( ( { A ,  B }  u.  { C } )  \  { C } )  =  ( ( { A ,  B }  \  { C } )  u.  ( { C }  \  { C } ) )
119, 10eqtr2i 2645 . 2  |-  ( ( { A ,  B }  \  { C }
)  u.  ( { C }  \  { C } ) )  =  ( { A ,  B ,  C }  \  { C } )
12 un0 3967 . 2  |-  ( { A ,  B }  u.  (/) )  =  { A ,  B }
137, 11, 123eqtr3g 2679 1  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B ,  C }  \  { C } )  =  { A ,  B } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    =/= wne 2794    \ cdif 3571    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   {cpr 4179   {ctp 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-tp 4182
This theorem is referenced by:  f13dfv  6530  nb3grprlem2  26283  cplgr3v  26331  frgr3v  27139  3vfriswmgr  27142  signswch  30638  signstfvcl  30650
  Copyright terms: Public domain W3C validator