![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihvalc | Structured version Visualization version GIF version |
Description: Value of isomorphism H for a lattice 𝐾 when ¬ 𝑋 ≤ 𝑊. (Contributed by NM, 4-Mar-2014.) |
Ref | Expression |
---|---|
dihval.b | ⊢ 𝐵 = (Base‘𝐾) |
dihval.l | ⊢ ≤ = (le‘𝐾) |
dihval.j | ⊢ ∨ = (join‘𝐾) |
dihval.m | ⊢ ∧ = (meet‘𝐾) |
dihval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dihval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihval.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihval.d | ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) |
dihval.c | ⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) |
dihval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihval.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
dihval.p | ⊢ ⊕ = (LSSum‘𝑈) |
Ref | Expression |
---|---|
dihvalc | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dihval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | dihval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | dihval.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
5 | dihval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | dihval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | dihval.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
8 | dihval.d | . . . 4 ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) | |
9 | dihval.c | . . . 4 ⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) | |
10 | dihval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
11 | dihval.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑈) | |
12 | dihval.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dihval 36521 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) = if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))))) |
14 | iffalse 4095 | . . 3 ⊢ (¬ 𝑋 ≤ 𝑊 → if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) | |
15 | 13, 14 | sylan9eq 2676 | . 2 ⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑋 ≤ 𝑊) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
16 | 15 | anasss 679 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ifcif 4086 class class class wbr 4653 ‘cfv 5888 ℩crio 6610 (class class class)co 6650 Basecbs 15857 lecple 15948 joincjn 16944 meetcmee 16945 LSSumclsm 18049 LSubSpclss 18932 Atomscatm 34550 LHypclh 35270 DVecHcdvh 36367 DIsoBcdib 36427 DIsoCcdic 36461 DIsoHcdih 36517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-dih 36518 |
This theorem is referenced by: dihlsscpre 36523 dihvalcqpre 36524 |
Copyright terms: Public domain | W3C validator |