![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dirref | Structured version Visualization version GIF version |
Description: A direction is reflexive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
Ref | Expression |
---|---|
dirref.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
dirref | ⊢ ((𝑅 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . 4 ⊢ 𝐴 = 𝐴 | |
2 | resieq 5407 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴( I ↾ 𝑋)𝐴 ↔ 𝐴 = 𝐴)) | |
3 | 2 | anidms 677 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴( I ↾ 𝑋)𝐴 ↔ 𝐴 = 𝐴)) |
4 | 1, 3 | mpbiri 248 | . . 3 ⊢ (𝐴 ∈ 𝑋 → 𝐴( I ↾ 𝑋)𝐴) |
5 | dirref.1 | . . . . . . 7 ⊢ 𝑋 = dom 𝑅 | |
6 | dirdm 17234 | . . . . . . 7 ⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) | |
7 | 5, 6 | syl5eq 2668 | . . . . . 6 ⊢ (𝑅 ∈ DirRel → 𝑋 = ∪ ∪ 𝑅) |
8 | 7 | reseq2d 5396 | . . . . 5 ⊢ (𝑅 ∈ DirRel → ( I ↾ 𝑋) = ( I ↾ ∪ ∪ 𝑅)) |
9 | eqid 2622 | . . . . . . . . 9 ⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 | |
10 | 9 | isdir 17232 | . . . . . . . 8 ⊢ (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅))))) |
11 | 10 | ibi 256 | . . . . . . 7 ⊢ (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅)))) |
12 | 11 | simpld 475 | . . . . . 6 ⊢ (𝑅 ∈ DirRel → (Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅)) |
13 | 12 | simprd 479 | . . . . 5 ⊢ (𝑅 ∈ DirRel → ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) |
14 | 8, 13 | eqsstrd 3639 | . . . 4 ⊢ (𝑅 ∈ DirRel → ( I ↾ 𝑋) ⊆ 𝑅) |
15 | 14 | ssbrd 4696 | . . 3 ⊢ (𝑅 ∈ DirRel → (𝐴( I ↾ 𝑋)𝐴 → 𝐴𝑅𝐴)) |
16 | 4, 15 | syl5 34 | . 2 ⊢ (𝑅 ∈ DirRel → (𝐴 ∈ 𝑋 → 𝐴𝑅𝐴)) |
17 | 16 | imp 445 | 1 ⊢ ((𝑅 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 ∪ cuni 4436 class class class wbr 4653 I cid 5023 × cxp 5112 ◡ccnv 5113 dom cdm 5114 ↾ cres 5116 ∘ ccom 5118 Rel wrel 5119 DirRelcdir 17228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-dir 17230 |
This theorem is referenced by: tailini 32371 |
Copyright terms: Public domain | W3C validator |