MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirdm Structured version   Visualization version   GIF version

Theorem dirdm 17234
Description: A direction's domain is equal to its field. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
dirdm (𝑅 ∈ DirRel → dom 𝑅 = 𝑅)

Proof of Theorem dirdm
StepHypRef Expression
1 ssun1 3776 . . . 4 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
2 dmrnssfld 5384 . . . 4 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
31, 2sstri 3612 . . 3 dom 𝑅 𝑅
43a1i 11 . 2 (𝑅 ∈ DirRel → dom 𝑅 𝑅)
5 dmresi 5457 . . 3 dom ( I ↾ 𝑅) = 𝑅
6 eqid 2622 . . . . . . . 8 𝑅 = 𝑅
76isdir 17232 . . . . . . 7 (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))))
87ibi 256 . . . . . 6 (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))))
98simpld 475 . . . . 5 (𝑅 ∈ DirRel → (Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅))
109simprd 479 . . . 4 (𝑅 ∈ DirRel → ( I ↾ 𝑅) ⊆ 𝑅)
11 dmss 5323 . . . 4 (( I ↾ 𝑅) ⊆ 𝑅 → dom ( I ↾ 𝑅) ⊆ dom 𝑅)
1210, 11syl 17 . . 3 (𝑅 ∈ DirRel → dom ( I ↾ 𝑅) ⊆ dom 𝑅)
135, 12syl5eqssr 3650 . 2 (𝑅 ∈ DirRel → 𝑅 ⊆ dom 𝑅)
144, 13eqssd 3620 1 (𝑅 ∈ DirRel → dom 𝑅 = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cun 3572  wss 3574   cuni 4436   I cid 5023   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  cres 5116  ccom 5118  Rel wrel 5119  DirRelcdir 17228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-dir 17230
This theorem is referenced by:  dirref  17235  dirge  17237  tailfval  32367  tailf  32370  filnetlem4  32376
  Copyright terms: Public domain W3C validator