![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disj4 | Structured version Visualization version GIF version |
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
disj4 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj3 4021 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) | |
2 | eqcom 2629 | . 2 ⊢ (𝐴 = (𝐴 ∖ 𝐵) ↔ (𝐴 ∖ 𝐵) = 𝐴) | |
3 | difss 3737 | . . . 4 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
4 | dfpss2 3692 | . . . 4 ⊢ ((𝐴 ∖ 𝐵) ⊊ 𝐴 ↔ ((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ ¬ (𝐴 ∖ 𝐵) = 𝐴)) | |
5 | 3, 4 | mpbiran 953 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ⊊ 𝐴 ↔ ¬ (𝐴 ∖ 𝐵) = 𝐴) |
6 | 5 | con2bii 347 | . 2 ⊢ ((𝐴 ∖ 𝐵) = 𝐴 ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) |
7 | 1, 2, 6 | 3bitri 286 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 = wceq 1483 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 ⊊ wpss 3575 ∅c0 3915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 |
This theorem is referenced by: marypha1lem 8339 infeq5i 8533 wilthlem2 24795 topdifinffinlem 33195 |
Copyright terms: Public domain | W3C validator |