MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj4 Structured version   Visualization version   GIF version

Theorem disj4 4025
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.)
Assertion
Ref Expression
disj4 ((𝐴𝐵) = ∅ ↔ ¬ (𝐴𝐵) ⊊ 𝐴)

Proof of Theorem disj4
StepHypRef Expression
1 disj3 4021 . 2 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
2 eqcom 2629 . 2 (𝐴 = (𝐴𝐵) ↔ (𝐴𝐵) = 𝐴)
3 difss 3737 . . . 4 (𝐴𝐵) ⊆ 𝐴
4 dfpss2 3692 . . . 4 ((𝐴𝐵) ⊊ 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴 ∧ ¬ (𝐴𝐵) = 𝐴))
53, 4mpbiran 953 . . 3 ((𝐴𝐵) ⊊ 𝐴 ↔ ¬ (𝐴𝐵) = 𝐴)
65con2bii 347 . 2 ((𝐴𝐵) = 𝐴 ↔ ¬ (𝐴𝐵) ⊊ 𝐴)
71, 2, 63bitri 286 1 ((𝐴𝐵) = ∅ ↔ ¬ (𝐴𝐵) ⊊ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196   = wceq 1483  cdif 3571  cin 3573  wss 3574  wpss 3575  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916
This theorem is referenced by:  marypha1lem  8339  infeq5i  8533  wilthlem2  24795  topdifinffinlem  33195
  Copyright terms: Public domain W3C validator