![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfpss2 | Structured version Visualization version GIF version |
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
dfpss2 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3590 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | df-ne 2795 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | anbi2i 730 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
4 | 1, 3 | bitri 264 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 384 = wceq 1483 ≠ wne 2794 ⊆ wss 3574 ⊊ wpss 3575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ne 2795 df-pss 3590 |
This theorem is referenced by: dfpss3 3693 sspss 3706 psstr 3711 npss 3717 ssnelpss 3718 pssv 4016 disj4 4025 f1imapss 6523 nnsdomo 8155 pssnn 8178 inf3lem6 8530 ssfin4 9132 fin23lem25 9146 fin23lem38 9171 isf32lem2 9176 pwfseqlem4 9484 genpcl 9830 prlem934 9855 ltaddpr 9856 chnlei 28344 cvbr2 29142 cvnbtwn2 29146 cvnbtwn3 29147 cvnbtwn4 29148 dfon2lem3 31690 dfon2lem5 31692 dfon2lem6 31693 dfon2lem7 31694 dfon2lem8 31695 dfon3 31999 lcvbr2 34309 lcvnbtwn2 34314 lcvnbtwn3 34315 |
Copyright terms: Public domain | W3C validator |