![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjxwwlksn | Structured version Visualization version GIF version |
Description: Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 29-Jul-2018.) (Revised by AV, 19-Apr-2021.) |
Ref | Expression |
---|---|
wwlksnexthasheq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wwlksnexthasheq.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
disjxwwlksn | ⊢ Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr 〈0, 𝑁〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ 𝐸)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1061 | . . . . 5 ⊢ (((𝑥 substr 〈0, 𝑁〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ 𝐸) → (𝑥 substr 〈0, 𝑁〉) = 𝑦) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ Word 𝑉 → (((𝑥 substr 〈0, 𝑁〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ 𝐸) → (𝑥 substr 〈0, 𝑁〉) = 𝑦)) |
3 | 2 | ss2rabi 3684 | . . 3 ⊢ {𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr 〈0, 𝑁〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 substr 〈0, 𝑁〉) = 𝑦} |
4 | 3 | rgenw 2924 | . 2 ⊢ ∀𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr 〈0, 𝑁〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 substr 〈0, 𝑁〉) = 𝑦} |
5 | disjxwrd 13455 | . 2 ⊢ Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ (𝑥 substr 〈0, 𝑁〉) = 𝑦} | |
6 | disjss2 4623 | . 2 ⊢ (∀𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr 〈0, 𝑁〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ 𝐸)} ⊆ {𝑥 ∈ Word 𝑉 ∣ (𝑥 substr 〈0, 𝑁〉) = 𝑦} → (Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ (𝑥 substr 〈0, 𝑁〉) = 𝑦} → Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr 〈0, 𝑁〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ 𝐸)})) | |
7 | 4, 5, 6 | mp2 9 | 1 ⊢ Disj 𝑦 ∈ (𝑁 WWalksN 𝐺){𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr 〈0, 𝑁〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ 𝐸)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 ⊆ wss 3574 {cpr 4179 〈cop 4183 Disj wdisj 4620 ‘cfv 5888 (class class class)co 6650 0cc0 9936 Word cword 13291 lastS clsw 13292 substr csubstr 13295 Vtxcvtx 25874 Edgcedg 25939 WWalksN cwwlksn 26718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-in 3581 df-ss 3588 df-disj 4621 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |