| Step | Hyp | Ref
| Expression |
| 1 | | frgrhash2wsp.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | fusgreg2wsp.m |
. . . . . . 7
⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) |
| 3 | 1, 2 | fusgr2wsp2nb 27198 |
. . . . . 6
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) → (𝑀‘𝑣) = ∪ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)∪ 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){〈“𝑐𝑣𝑑”〉}) |
| 4 | 3 | fveq2d 6195 |
. . . . 5
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) → (#‘(𝑀‘𝑣)) = (#‘∪ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)∪ 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){〈“𝑐𝑣𝑑”〉})) |
| 5 | 4 | adantr 481 |
. . . 4
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (#‘(𝑀‘𝑣)) = (#‘∪ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)∪ 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){〈“𝑐𝑣𝑑”〉})) |
| 6 | 1 | eleq2i 2693 |
. . . . . . 7
⊢ (𝑣 ∈ 𝑉 ↔ 𝑣 ∈ (Vtx‘𝐺)) |
| 7 | | nbfiusgrfi 26277 |
. . . . . . 7
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝑣) ∈ Fin) |
| 8 | 6, 7 | sylan2b 492 |
. . . . . 6
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) → (𝐺 NeighbVtx 𝑣) ∈ Fin) |
| 9 | 8 | adantr 481 |
. . . . 5
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐺 NeighbVtx 𝑣) ∈ Fin) |
| 10 | | eqid 2622 |
. . . . 5
⊢ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}) = ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}) |
| 11 | | snfi 8038 |
. . . . . 6
⊢
{〈“𝑐𝑣𝑑”〉} ∈ Fin |
| 12 | 11 | a1i 11 |
. . . . 5
⊢ ((((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣) ∧ 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐})) → {〈“𝑐𝑣𝑑”〉} ∈ Fin) |
| 13 | 1 | nbgrssvtx 26256 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ FinUSGraph → (𝐺 NeighbVtx 𝑣) ⊆ 𝑉) |
| 14 | 13 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)) → (𝐺 NeighbVtx 𝑣) ⊆ 𝑉) |
| 15 | 14 | ssdifd 3746 |
. . . . . . . . 9
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)) → ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}) ⊆ (𝑉 ∖ {𝑐})) |
| 16 | | iunss1 4532 |
. . . . . . . . 9
⊢ (((𝐺 NeighbVtx 𝑣) ∖ {𝑐}) ⊆ (𝑉 ∖ {𝑐}) → ∪
𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){〈“𝑐𝑣𝑑”〉} ⊆ ∪ 𝑑 ∈ (𝑉 ∖ {𝑐}){〈“𝑐𝑣𝑑”〉}) |
| 17 | 15, 16 | syl 17 |
. . . . . . . 8
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)) → ∪
𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){〈“𝑐𝑣𝑑”〉} ⊆ ∪ 𝑑 ∈ (𝑉 ∖ {𝑐}){〈“𝑐𝑣𝑑”〉}) |
| 18 | 17 | ralrimiva 2966 |
. . . . . . 7
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) → ∀𝑐 ∈ (𝐺 NeighbVtx 𝑣)∪ 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){〈“𝑐𝑣𝑑”〉} ⊆ ∪ 𝑑 ∈ (𝑉 ∖ {𝑐}){〈“𝑐𝑣𝑑”〉}) |
| 19 | | simpr 477 |
. . . . . . . 8
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) |
| 20 | | s3iunsndisj 13707 |
. . . . . . . 8
⊢ (𝑣 ∈ 𝑉 → Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣)∪ 𝑑 ∈ (𝑉 ∖ {𝑐}){〈“𝑐𝑣𝑑”〉}) |
| 21 | 19, 20 | syl 17 |
. . . . . . 7
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) → Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣)∪ 𝑑 ∈ (𝑉 ∖ {𝑐}){〈“𝑐𝑣𝑑”〉}) |
| 22 | | disjss2 4623 |
. . . . . . 7
⊢
(∀𝑐 ∈
(𝐺 NeighbVtx 𝑣)∪ 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){〈“𝑐𝑣𝑑”〉} ⊆ ∪ 𝑑 ∈ (𝑉 ∖ {𝑐}){〈“𝑐𝑣𝑑”〉} → (Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣)∪ 𝑑 ∈ (𝑉 ∖ {𝑐}){〈“𝑐𝑣𝑑”〉} → Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣)∪ 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){〈“𝑐𝑣𝑑”〉})) |
| 23 | 18, 21, 22 | sylc 65 |
. . . . . 6
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) → Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣)∪ 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){〈“𝑐𝑣𝑑”〉}) |
| 24 | 23 | adantr 481 |
. . . . 5
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Disj 𝑐 ∈ (𝐺 NeighbVtx 𝑣)∪ 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){〈“𝑐𝑣𝑑”〉}) |
| 25 | 19 | adantr 481 |
. . . . . . . 8
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝑣 ∈ 𝑉) |
| 26 | 25 | anim1i 592 |
. . . . . . 7
⊢ ((((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)) → (𝑣 ∈ 𝑉 ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣))) |
| 27 | 26 | ancomd 467 |
. . . . . 6
⊢ ((((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)) → (𝑐 ∈ (𝐺 NeighbVtx 𝑣) ∧ 𝑣 ∈ 𝑉)) |
| 28 | | s3sndisj 13706 |
. . . . . 6
⊢ ((𝑐 ∈ (𝐺 NeighbVtx 𝑣) ∧ 𝑣 ∈ 𝑉) → Disj 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){〈“𝑐𝑣𝑑”〉}) |
| 29 | 27, 28 | syl 17 |
. . . . 5
⊢ ((((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)) → Disj 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){〈“𝑐𝑣𝑑”〉}) |
| 30 | | s3cli 13626 |
. . . . . 6
⊢
〈“𝑐𝑣𝑑”〉 ∈ Word V |
| 31 | | hashsng 13159 |
. . . . . 6
⊢
(〈“𝑐𝑣𝑑”〉 ∈ Word V →
(#‘{〈“𝑐𝑣𝑑”〉}) = 1) |
| 32 | 30, 31 | mp1i 13 |
. . . . 5
⊢ ((((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑐 ∈ (𝐺 NeighbVtx 𝑣) ∧ 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐})) → (#‘{〈“𝑐𝑣𝑑”〉}) = 1) |
| 33 | 9, 10, 12, 24, 29, 32 | hash2iun1dif1 14556 |
. . . 4
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (#‘∪ 𝑐 ∈ (𝐺 NeighbVtx 𝑣)∪ 𝑑 ∈ ((𝐺 NeighbVtx 𝑣) ∖ {𝑐}){〈“𝑐𝑣𝑑”〉}) = ((#‘(𝐺 NeighbVtx 𝑣)) · ((#‘(𝐺 NeighbVtx 𝑣)) − 1))) |
| 34 | | fusgrusgr 26214 |
. . . . . . 7
⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph
) |
| 35 | 1 | hashnbusgrvd 26424 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → (#‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣)) |
| 36 | 34, 35 | sylan 488 |
. . . . . 6
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) → (#‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣)) |
| 37 | | id 22 |
. . . . . . 7
⊢
((#‘(𝐺
NeighbVtx 𝑣)) =
((VtxDeg‘𝐺)‘𝑣) → (#‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣)) |
| 38 | | oveq1 6657 |
. . . . . . 7
⊢
((#‘(𝐺
NeighbVtx 𝑣)) =
((VtxDeg‘𝐺)‘𝑣) → ((#‘(𝐺 NeighbVtx 𝑣)) − 1) = (((VtxDeg‘𝐺)‘𝑣) − 1)) |
| 39 | 37, 38 | oveq12d 6668 |
. . . . . 6
⊢
((#‘(𝐺
NeighbVtx 𝑣)) =
((VtxDeg‘𝐺)‘𝑣) → ((#‘(𝐺 NeighbVtx 𝑣)) · ((#‘(𝐺 NeighbVtx 𝑣)) − 1)) = (((VtxDeg‘𝐺)‘𝑣) · (((VtxDeg‘𝐺)‘𝑣) − 1))) |
| 40 | 36, 39 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) → ((#‘(𝐺 NeighbVtx 𝑣)) · ((#‘(𝐺 NeighbVtx 𝑣)) − 1)) = (((VtxDeg‘𝐺)‘𝑣) · (((VtxDeg‘𝐺)‘𝑣) − 1))) |
| 41 | | id 22 |
. . . . . 6
⊢
(((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((VtxDeg‘𝐺)‘𝑣) = 𝐾) |
| 42 | | oveq1 6657 |
. . . . . 6
⊢
(((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) − 1) = (𝐾 − 1)) |
| 43 | 41, 42 | oveq12d 6668 |
. . . . 5
⊢
(((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) · (((VtxDeg‘𝐺)‘𝑣) − 1)) = (𝐾 · (𝐾 − 1))) |
| 44 | 40, 43 | sylan9eq 2676 |
. . . 4
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ((#‘(𝐺 NeighbVtx 𝑣)) · ((#‘(𝐺 NeighbVtx 𝑣)) − 1)) = (𝐾 · (𝐾 − 1))) |
| 45 | 5, 33, 44 | 3eqtrd 2660 |
. . 3
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (#‘(𝑀‘𝑣)) = (𝐾 · (𝐾 − 1))) |
| 46 | 45 | ex 450 |
. 2
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑣 ∈ 𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (#‘(𝑀‘𝑣)) = (𝐾 · (𝐾 − 1)))) |
| 47 | 46 | ralrimiva 2966 |
1
⊢ (𝐺 ∈ FinUSGraph →
∀𝑣 ∈ 𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (#‘(𝑀‘𝑣)) = (𝐾 · (𝐾 − 1)))) |