MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjxwwlksn Structured version   Visualization version   Unicode version

Theorem disjxwwlksn 26799
Description: Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 29-Jul-2018.) (Revised by AV, 19-Apr-2021.)
Hypotheses
Ref Expression
wwlksnexthasheq.v  |-  V  =  (Vtx `  G )
wwlksnexthasheq.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
disjxwwlksn  |- Disj  y  e.  ( N WWalksN  G ) { x  e. Word  V  | 
( ( x substr  <. 0 ,  N >. )  =  y  /\  ( y ` 
0 )  =  P  /\  { ( lastS  `  y
) ,  ( lastS  `  x
) }  e.  E
) }
Distinct variable groups:    y, N    x, V    x, y
Allowed substitution hints:    P( x, y)    E( x, y)    G( x, y)    N( x)    V( y)

Proof of Theorem disjxwwlksn
StepHypRef Expression
1 simp1 1061 . . . . 5  |-  ( ( ( x substr  <. 0 ,  N >. )  =  y  /\  ( y ` 
0 )  =  P  /\  { ( lastS  `  y
) ,  ( lastS  `  x
) }  e.  E
)  ->  ( x substr  <.
0 ,  N >. )  =  y )
21a1i 11 . . . 4  |-  ( x  e. Word  V  ->  (
( ( x substr  <. 0 ,  N >. )  =  y  /\  ( y ` 
0 )  =  P  /\  { ( lastS  `  y
) ,  ( lastS  `  x
) }  e.  E
)  ->  ( x substr  <.
0 ,  N >. )  =  y ) )
32ss2rabi 3684 . . 3  |-  { x  e. Word  V  |  ( ( x substr  <. 0 ,  N >. )  =  y  /\  ( y `  0
)  =  P  /\  { ( lastS  `  y ) ,  ( lastS  `  x ) }  e.  E ) }  C_  { x  e. Word  V  |  ( x substr  <. 0 ,  N >. )  =  y }
43rgenw 2924 . 2  |-  A. y  e.  ( N WWalksN  G ) { x  e. Word  V  | 
( ( x substr  <. 0 ,  N >. )  =  y  /\  ( y ` 
0 )  =  P  /\  { ( lastS  `  y
) ,  ( lastS  `  x
) }  e.  E
) }  C_  { x  e. Word  V  |  ( x substr  <. 0 ,  N >. )  =  y }
5 disjxwrd 13455 . 2  |- Disj  y  e.  ( N WWalksN  G ) { x  e. Word  V  | 
( x substr  <. 0 ,  N >. )  =  y }
6 disjss2 4623 . 2  |-  ( A. y  e.  ( N WWalksN  G ) { x  e. Word  V  |  ( (
x substr  <. 0 ,  N >. )  =  y  /\  ( y `  0
)  =  P  /\  { ( lastS  `  y ) ,  ( lastS  `  x ) }  e.  E ) }  C_  { x  e. Word  V  |  ( x substr  <. 0 ,  N >. )  =  y }  ->  (Disj  y  e.  ( N WWalksN  G ) { x  e. Word  V  |  ( x substr  <.
0 ,  N >. )  =  y }  -> Disj  y  e.  ( N WWalksN  G ) { x  e. Word  V  | 
( ( x substr  <. 0 ,  N >. )  =  y  /\  ( y ` 
0 )  =  P  /\  { ( lastS  `  y
) ,  ( lastS  `  x
) }  e.  E
) } ) )
74, 5, 6mp2 9 1  |- Disj  y  e.  ( N WWalksN  G ) { x  e. Word  V  | 
( ( x substr  <. 0 ,  N >. )  =  y  /\  ( y ` 
0 )  =  P  /\  { ( lastS  `  y
) ,  ( lastS  `  x
) }  e.  E
) }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   {cpr 4179   <.cop 4183  Disj wdisj 4620   ` cfv 5888  (class class class)co 6650   0cc0 9936  Word cword 13291   lastS clsw 13292   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-in 3581  df-ss 3588  df-disj 4621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator