MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dminxp Structured version   Visualization version   GIF version

Theorem dminxp 5574
Description: Domain of the intersection with a Cartesian product. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
dminxp (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem dminxp
StepHypRef Expression
1 dfdm4 5316 . . . 4 dom (𝐶 ∩ (𝐴 × 𝐵)) = ran (𝐶 ∩ (𝐴 × 𝐵))
2 cnvin 5540 . . . . . 6 (𝐶 ∩ (𝐴 × 𝐵)) = (𝐶(𝐴 × 𝐵))
3 cnvxp 5551 . . . . . . 7 (𝐴 × 𝐵) = (𝐵 × 𝐴)
43ineq2i 3811 . . . . . 6 (𝐶(𝐴 × 𝐵)) = (𝐶 ∩ (𝐵 × 𝐴))
52, 4eqtri 2644 . . . . 5 (𝐶 ∩ (𝐴 × 𝐵)) = (𝐶 ∩ (𝐵 × 𝐴))
65rneqi 5352 . . . 4 ran (𝐶 ∩ (𝐴 × 𝐵)) = ran (𝐶 ∩ (𝐵 × 𝐴))
71, 6eqtri 2644 . . 3 dom (𝐶 ∩ (𝐴 × 𝐵)) = ran (𝐶 ∩ (𝐵 × 𝐴))
87eqeq1i 2627 . 2 (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ran (𝐶 ∩ (𝐵 × 𝐴)) = 𝐴)
9 rninxp 5573 . 2 (ran (𝐶 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝐶𝑥)
10 vex 3203 . . . . 5 𝑦 ∈ V
11 vex 3203 . . . . 5 𝑥 ∈ V
1210, 11brcnv 5305 . . . 4 (𝑦𝐶𝑥𝑥𝐶𝑦)
1312rexbii 3041 . . 3 (∃𝑦𝐵 𝑦𝐶𝑥 ↔ ∃𝑦𝐵 𝑥𝐶𝑦)
1413ralbii 2980 . 2 (∀𝑥𝐴𝑦𝐵 𝑦𝐶𝑥 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
158, 9, 143bitri 286 1 (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  wral 2912  wrex 2913  cin 3573   class class class wbr 4653   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  trust  22033
  Copyright terms: Public domain W3C validator