MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rninxp Structured version   Visualization version   GIF version

Theorem rninxp 5573
Description: Range of the intersection with a Cartesian product. (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rninxp (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rninxp
StepHypRef Expression
1 dfss3 3592 . 2 (𝐵 ⊆ ran (𝐶𝐴) ↔ ∀𝑦𝐵 𝑦 ∈ ran (𝐶𝐴))
2 ssrnres 5572 . 2 (𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)
3 df-ima 5127 . . . . 5 (𝐶𝐴) = ran (𝐶𝐴)
43eleq2i 2693 . . . 4 (𝑦 ∈ (𝐶𝐴) ↔ 𝑦 ∈ ran (𝐶𝐴))
5 vex 3203 . . . . 5 𝑦 ∈ V
65elima 5471 . . . 4 (𝑦 ∈ (𝐶𝐴) ↔ ∃𝑥𝐴 𝑥𝐶𝑦)
74, 6bitr3i 266 . . 3 (𝑦 ∈ ran (𝐶𝐴) ↔ ∃𝑥𝐴 𝑥𝐶𝑦)
87ralbii 2980 . 2 (∀𝑦𝐵 𝑦 ∈ ran (𝐶𝐴) ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
91, 2, 83bitr3i 290 1 (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cin 3573  wss 3574   class class class wbr 4653   × cxp 5112  ran crn 5115  cres 5116  cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  dminxp  5574  fncnv  5962  exfo  6377  brdom3  9350  brdom5  9351  brdom4  9352
  Copyright terms: Public domain W3C validator