![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmsnsnsn | Structured version Visualization version GIF version |
Description: The domain of the singleton of the singleton of a singleton. (Contributed by NM, 15-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
dmsnsnsn | ⊢ dom {{{𝐴}}} = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3203 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
2 | 1 | opid 4421 | . . . . . . 7 ⊢ 〈𝑥, 𝑥〉 = {{𝑥}} |
3 | sneq 4187 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
4 | 3 | sneqd 4189 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → {{𝑥}} = {{𝐴}}) |
5 | 2, 4 | syl5eq 2668 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑥〉 = {{𝐴}}) |
6 | 5 | sneqd 4189 | . . . . 5 ⊢ (𝑥 = 𝐴 → {〈𝑥, 𝑥〉} = {{{𝐴}}}) |
7 | 6 | dmeqd 5326 | . . . 4 ⊢ (𝑥 = 𝐴 → dom {〈𝑥, 𝑥〉} = dom {{{𝐴}}}) |
8 | 7, 3 | eqeq12d 2637 | . . 3 ⊢ (𝑥 = 𝐴 → (dom {〈𝑥, 𝑥〉} = {𝑥} ↔ dom {{{𝐴}}} = {𝐴})) |
9 | 1 | dmsnop 5609 | . . 3 ⊢ dom {〈𝑥, 𝑥〉} = {𝑥} |
10 | 8, 9 | vtoclg 3266 | . 2 ⊢ (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴}) |
11 | 0ex 4790 | . . . . 5 ⊢ ∅ ∈ V | |
12 | 11 | snid 4208 | . . . 4 ⊢ ∅ ∈ {∅} |
13 | dmsn0el 5604 | . . . 4 ⊢ (∅ ∈ {∅} → dom {{∅}} = ∅) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ dom {{∅}} = ∅ |
15 | snprc 4253 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
16 | 15 | biimpi 206 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
17 | 16 | sneqd 4189 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → {{𝐴}} = {∅}) |
18 | 17 | sneqd 4189 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {{{𝐴}}} = {{∅}}) |
19 | 18 | dmeqd 5326 | . . 3 ⊢ (¬ 𝐴 ∈ V → dom {{{𝐴}}} = dom {{∅}}) |
20 | 14, 19, 16 | 3eqtr4a 2682 | . 2 ⊢ (¬ 𝐴 ∈ V → dom {{{𝐴}}} = {𝐴}) |
21 | 10, 20 | pm2.61i 176 | 1 ⊢ dom {{{𝐴}}} = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 {csn 4177 〈cop 4183 dom cdm 5114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-dm 5124 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |