MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnsnsn Structured version   Visualization version   Unicode version

Theorem dmsnsnsn 5613
Description: The domain of the singleton of the singleton of a singleton. (Contributed by NM, 15-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmsnsnsn  |-  dom  { { { A } } }  =  { A }

Proof of Theorem dmsnsnsn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . . . 8  |-  x  e. 
_V
21opid 4421 . . . . . . 7  |-  <. x ,  x >.  =  { { x } }
3 sneq 4187 . . . . . . . 8  |-  ( x  =  A  ->  { x }  =  { A } )
43sneqd 4189 . . . . . . 7  |-  ( x  =  A  ->  { {
x } }  =  { { A } }
)
52, 4syl5eq 2668 . . . . . 6  |-  ( x  =  A  ->  <. x ,  x >.  =  { { A } } )
65sneqd 4189 . . . . 5  |-  ( x  =  A  ->  { <. x ,  x >. }  =  { { { A } } } )
76dmeqd 5326 . . . 4  |-  ( x  =  A  ->  dom  {
<. x ,  x >. }  =  dom  { { { A } } }
)
87, 3eqeq12d 2637 . . 3  |-  ( x  =  A  ->  ( dom  { <. x ,  x >. }  =  { x } 
<->  dom  { { { A } } }  =  { A } ) )
91dmsnop 5609 . . 3  |-  dom  { <. x ,  x >. }  =  { x }
108, 9vtoclg 3266 . 2  |-  ( A  e.  _V  ->  dom  { { { A } } }  =  { A } )
11 0ex 4790 . . . . 5  |-  (/)  e.  _V
1211snid 4208 . . . 4  |-  (/)  e.  { (/)
}
13 dmsn0el 5604 . . . 4  |-  ( (/)  e.  { (/) }  ->  dom  { { (/) } }  =  (/) )
1412, 13ax-mp 5 . . 3  |-  dom  { { (/) } }  =  (/)
15 snprc 4253 . . . . . . 7  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
1615biimpi 206 . . . . . 6  |-  ( -.  A  e.  _V  ->  { A }  =  (/) )
1716sneqd 4189 . . . . 5  |-  ( -.  A  e.  _V  ->  { { A } }  =  { (/) } )
1817sneqd 4189 . . . 4  |-  ( -.  A  e.  _V  ->  { { { A } } }  =  { { (/) } } )
1918dmeqd 5326 . . 3  |-  ( -.  A  e.  _V  ->  dom 
{ { { A } } }  =  dom  { { (/) } } )
2014, 19, 163eqtr4a 2682 . 2  |-  ( -.  A  e.  _V  ->  dom 
{ { { A } } }  =  { A } )
2110, 20pm2.61i 176 1  |-  dom  { { { A } } }  =  { A }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   {csn 4177   <.cop 4183   dom cdm 5114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-dm 5124
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator