Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochfval Structured version   Visualization version   GIF version

Theorem dochfval 36639
Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.)
Hypotheses
Ref Expression
dochval.b 𝐵 = (Base‘𝐾)
dochval.g 𝐺 = (glb‘𝐾)
dochval.o = (oc‘𝐾)
dochval.h 𝐻 = (LHyp‘𝐾)
dochval.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dochval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochval.v 𝑉 = (Base‘𝑈)
dochval.n 𝑁 = ((ocH‘𝐾)‘𝑊)
Assertion
Ref Expression
dochfval ((𝐾𝑋𝑊𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))))
Distinct variable groups:   𝑦,𝐵   𝑥,𝑦,𝐾   𝑥,𝑉   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝑈(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝑁(𝑥,𝑦)   (𝑥,𝑦)   𝑉(𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem dochfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dochval.n . . 3 𝑁 = ((ocH‘𝐾)‘𝑊)
2 dochval.b . . . . 5 𝐵 = (Base‘𝐾)
3 dochval.g . . . . 5 𝐺 = (glb‘𝐾)
4 dochval.o . . . . 5 = (oc‘𝐾)
5 dochval.h . . . . 5 𝐻 = (LHyp‘𝐾)
62, 3, 4, 5dochffval 36638 . . . 4 (𝐾𝑋 → (ocH‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))))
76fveq1d 6193 . . 3 (𝐾𝑋 → ((ocH‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))))‘𝑊))
81, 7syl5eq 2668 . 2 (𝐾𝑋𝑁 = ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))))‘𝑊))
9 fveq2 6191 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
10 dochval.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
119, 10syl6eqr 2674 . . . . . . 7 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈)
1211fveq2d 6195 . . . . . 6 (𝑤 = 𝑊 → (Base‘((DVecH‘𝐾)‘𝑤)) = (Base‘𝑈))
13 dochval.v . . . . . 6 𝑉 = (Base‘𝑈)
1412, 13syl6eqr 2674 . . . . 5 (𝑤 = 𝑊 → (Base‘((DVecH‘𝐾)‘𝑤)) = 𝑉)
1514pweqd 4163 . . . 4 (𝑤 = 𝑊 → 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) = 𝒫 𝑉)
16 fveq2 6191 . . . . . 6 (𝑤 = 𝑊 → ((DIsoH‘𝐾)‘𝑤) = ((DIsoH‘𝐾)‘𝑊))
17 dochval.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
1816, 17syl6eqr 2674 . . . . 5 (𝑤 = 𝑊 → ((DIsoH‘𝐾)‘𝑤) = 𝐼)
1918fveq1d 6193 . . . . . . . . 9 (𝑤 = 𝑊 → (((DIsoH‘𝐾)‘𝑤)‘𝑦) = (𝐼𝑦))
2019sseq2d 3633 . . . . . . . 8 (𝑤 = 𝑊 → (𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦) ↔ 𝑥 ⊆ (𝐼𝑦)))
2120rabbidv 3189 . . . . . . 7 (𝑤 = 𝑊 → {𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)} = {𝑦𝐵𝑥 ⊆ (𝐼𝑦)})
2221fveq2d 6195 . . . . . 6 (𝑤 = 𝑊 → (𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}) = (𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))
2322fveq2d 6195 . . . . 5 (𝑤 = 𝑊 → ( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})) = ( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))
2418, 23fveq12d 6197 . . . 4 (𝑤 = 𝑊 → (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))))
2515, 24mpteq12dv 4733 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))) = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))))
26 eqid 2622 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))))
27 fvex 6201 . . . . . 6 (Base‘𝑈) ∈ V
2813, 27eqeltri 2697 . . . . 5 𝑉 ∈ V
2928pwex 4848 . . . 4 𝒫 𝑉 ∈ V
3029mptex 6486 . . 3 (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))) ∈ V
3125, 26, 30fvmpt 6282 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))))‘𝑊) = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))))
328, 31sylan9eq 2676 1 ((𝐾𝑋𝑊𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  wss 3574  𝒫 cpw 4158  cmpt 4729  cfv 5888  Basecbs 15857  occoc 15949  glbcglb 16943  LHypclh 35270  DVecHcdvh 36367  DIsoHcdih 36517  ocHcoch 36636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-doch 36637
This theorem is referenced by:  dochval  36640  dochfN  36645
  Copyright terms: Public domain W3C validator