MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfabd2 Structured version   Visualization version   GIF version

Theorem nfabd2 2784
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
nfabd2.1 𝑦𝜑
nfabd2.2 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfabd2 (𝜑𝑥{𝑦𝜓})

Proof of Theorem nfabd2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . 4 𝑧(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
2 df-clab 2609 . . . . 5 (𝑧 ∈ {𝑦𝜓} ↔ [𝑧 / 𝑦]𝜓)
3 nfabd2.1 . . . . . . 7 𝑦𝜑
4 nfnae 2318 . . . . . . 7 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
53, 4nfan 1828 . . . . . 6 𝑦(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
6 nfabd2.2 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
75, 6nfsbd 2442 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥[𝑧 / 𝑦]𝜓)
82, 7nfxfrd 1780 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑧 ∈ {𝑦𝜓})
91, 8nfcd 2759 . . 3 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥{𝑦𝜓})
109ex 450 . 2 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦𝑥{𝑦𝜓}))
11 nfab1 2766 . . 3 𝑦{𝑦𝜓}
12 eqidd 2623 . . . 4 (∀𝑥 𝑥 = 𝑦 → {𝑦𝜓} = {𝑦𝜓})
1312drnfc1 2782 . . 3 (∀𝑥 𝑥 = 𝑦 → (𝑥{𝑦𝜓} ↔ 𝑦{𝑦𝜓}))
1411, 13mpbiri 248 . 2 (∀𝑥 𝑥 = 𝑦𝑥{𝑦𝜓})
1510, 14pm2.61d2 172 1 (𝜑𝑥{𝑦𝜓})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1481  wnf 1708  [wsb 1880  wcel 1990  {cab 2608  wnfc 2751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753
This theorem is referenced by:  nfabd  2785  nfrab  3123  nfixp  7927
  Copyright terms: Public domain W3C validator