| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfabd2 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfabd2.1 | ⊢ Ⅎ𝑦𝜑 |
| nfabd2.2 | ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfabd2 | ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 | . . . 4 ⊢ Ⅎ𝑧(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) | |
| 2 | df-clab 2609 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 3 | nfabd2.1 | . . . . . . 7 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfnae 2318 | . . . . . . 7 ⊢ Ⅎ𝑦 ¬ ∀𝑥 𝑥 = 𝑦 | |
| 5 | 3, 4 | nfan 1828 | . . . . . 6 ⊢ Ⅎ𝑦(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) |
| 6 | nfabd2.2 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) | |
| 7 | 5, 6 | nfsbd 2442 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥[𝑧 / 𝑦]𝜓) |
| 8 | 2, 7 | nfxfrd 1780 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜓}) |
| 9 | 1, 8 | nfcd 2759 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| 10 | 9 | ex 450 | . 2 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥{𝑦 ∣ 𝜓})) |
| 11 | nfab1 2766 | . . 3 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜓} | |
| 12 | eqidd 2623 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑦 ∣ 𝜓} = {𝑦 ∣ 𝜓}) | |
| 13 | 12 | drnfc1 2782 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥{𝑦 ∣ 𝜓} ↔ Ⅎ𝑦{𝑦 ∣ 𝜓})) |
| 14 | 11, 13 | mpbiri 248 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| 15 | 10, 14 | pm2.61d2 172 | 1 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ∀wal 1481 Ⅎwnf 1708 [wsb 1880 ∈ wcel 1990 {cab 2608 Ⅎwnfc 2751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 |
| This theorem is referenced by: nfabd 2785 nfrab 3123 nfixp 7927 |
| Copyright terms: Public domain | W3C validator |