![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > elch0 | Structured version Visualization version GIF version |
Description: Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elch0 | ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ch0 28110 | . . 3 ⊢ 0ℋ = {0ℎ} | |
2 | 1 | eleq2i 2693 | . 2 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 ∈ {0ℎ}) |
3 | ax-hv0cl 27860 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
4 | 3 | elexi 3213 | . . 3 ⊢ 0ℎ ∈ V |
5 | 4 | elsn2 4211 | . 2 ⊢ (𝐴 ∈ {0ℎ} ↔ 𝐴 = 0ℎ) |
6 | 2, 5 | bitri 264 | 1 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1483 ∈ wcel 1990 {csn 4177 ℋchil 27776 0ℎc0v 27781 0ℋc0h 27792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-hv0cl 27860 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sn 4178 df-ch0 28110 |
This theorem is referenced by: ocin 28155 ocnel 28157 shuni 28159 choc0 28185 choc1 28186 omlsilem 28261 pjoc1i 28290 shne0i 28307 h1dn0 28411 spansnm0i 28509 nonbooli 28510 eleigvec 28816 cdjreui 29291 cdj3lem1 29293 |
Copyright terms: Public domain | W3C validator |