HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elch0 Structured version   Visualization version   GIF version

Theorem elch0 28111
Description: Membership in zero for closed subspaces of Hilbert space. (Contributed by NM, 6-Apr-2001.) (New usage is discouraged.)
Assertion
Ref Expression
elch0 (𝐴 ∈ 0𝐴 = 0)

Proof of Theorem elch0
StepHypRef Expression
1 df-ch0 28110 . . 3 0 = {0}
21eleq2i 2693 . 2 (𝐴 ∈ 0𝐴 ∈ {0})
3 ax-hv0cl 27860 . . . 4 0 ∈ ℋ
43elexi 3213 . . 3 0 ∈ V
54elsn2 4211 . 2 (𝐴 ∈ {0} ↔ 𝐴 = 0)
62, 5bitri 264 1 (𝐴 ∈ 0𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  wcel 1990  {csn 4177  chil 27776  0c0v 27781  0c0h 27792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-hv0cl 27860
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sn 4178  df-ch0 28110
This theorem is referenced by:  ocin  28155  ocnel  28157  shuni  28159  choc0  28185  choc1  28186  omlsilem  28261  pjoc1i  28290  shne0i  28307  h1dn0  28411  spansnm0i  28509  nonbooli  28510  eleigvec  28816  cdjreui  29291  cdj3lem1  29293
  Copyright terms: Public domain W3C validator