| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shne0i | Structured version Visualization version GIF version | ||
| Description: A nonzero subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shne0.1 | ⊢ 𝐴 ∈ Sℋ |
| Ref | Expression |
|---|---|
| shne0i | ⊢ (𝐴 ≠ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2795 | . 2 ⊢ (𝐴 ≠ 0ℋ ↔ ¬ 𝐴 = 0ℋ) | |
| 2 | df-rex 2918 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 0ℋ ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 0ℋ)) | |
| 3 | nss 3663 | . . 3 ⊢ (¬ 𝐴 ⊆ 0ℋ ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 0ℋ)) | |
| 4 | shne0.1 | . . . . 5 ⊢ 𝐴 ∈ Sℋ | |
| 5 | shle0 28301 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ) |
| 7 | 6 | notbii 310 | . . 3 ⊢ (¬ 𝐴 ⊆ 0ℋ ↔ ¬ 𝐴 = 0ℋ) |
| 8 | 2, 3, 7 | 3bitr2ri 289 | . 2 ⊢ (¬ 𝐴 = 0ℋ ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 0ℋ) |
| 9 | elch0 28111 | . . . 4 ⊢ (𝑥 ∈ 0ℋ ↔ 𝑥 = 0ℎ) | |
| 10 | 9 | necon3bbii 2841 | . . 3 ⊢ (¬ 𝑥 ∈ 0ℋ ↔ 𝑥 ≠ 0ℎ) |
| 11 | 10 | rexbii 3041 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ) |
| 12 | 1, 8, 11 | 3bitri 286 | 1 ⊢ (𝐴 ≠ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ≠ wne 2794 ∃wrex 2913 ⊆ wss 3574 0ℎc0v 27781 Sℋ csh 27785 0ℋc0h 27792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-hilex 27856 ax-hv0cl 27860 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-sh 28064 df-ch0 28110 |
| This theorem is referenced by: chne0i 28312 shatomici 29217 |
| Copyright terms: Public domain | W3C validator |