![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > eleigvec | Structured version Visualization version GIF version |
Description: Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eleigvec | ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eigvecval 28755 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)}) | |
2 | 1 | eleq2d 2687 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ 𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)})) |
3 | eldif 3584 | . . . . 5 ⊢ (𝐴 ∈ ( ℋ ∖ 0ℋ) ↔ (𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0ℋ)) | |
4 | elch0 28111 | . . . . . . 7 ⊢ (𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ) | |
5 | 4 | necon3bbii 2841 | . . . . . 6 ⊢ (¬ 𝐴 ∈ 0ℋ ↔ 𝐴 ≠ 0ℎ) |
6 | 5 | anbi2i 730 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0ℋ) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)) |
7 | 3, 6 | bitri 264 | . . . 4 ⊢ (𝐴 ∈ ( ℋ ∖ 0ℋ) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)) |
8 | 7 | anbi1i 731 | . . 3 ⊢ ((𝐴 ∈ ( ℋ ∖ 0ℋ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
9 | fveq2 6191 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑇‘𝑦) = (𝑇‘𝐴)) | |
10 | oveq2 6658 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ·ℎ 𝑦) = (𝑥 ·ℎ 𝐴)) | |
11 | 9, 10 | eqeq12d 2637 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑇‘𝑦) = (𝑥 ·ℎ 𝑦) ↔ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
12 | 11 | rexbidv 3052 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦) ↔ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
13 | 12 | elrab 3363 | . . 3 ⊢ (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)} ↔ (𝐴 ∈ ( ℋ ∖ 0ℋ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
14 | df-3an 1039 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)) ↔ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) | |
15 | 8, 13, 14 | 3bitr4i 292 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑥 ∈ ℂ (𝑇‘𝑦) = (𝑥 ·ℎ 𝑦)} ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴))) |
16 | 2, 15 | syl6bb 276 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∃wrex 2913 {crab 2916 ∖ cdif 3571 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 ℋchil 27776 ·ℎ csm 27778 0ℎc0v 27781 0ℋc0h 27792 eigveccei 27816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-hilex 27856 ax-hv0cl 27860 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-ch0 28110 df-eigvec 28712 |
This theorem is referenced by: eleigvec2 28817 eigvalcl 28820 |
Copyright terms: Public domain | W3C validator |