MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem4 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem4 25094
Description: Lemma 4 for gausslemma2d 25099. (Contributed by AV, 16-Jun-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem4 (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem gausslemma2dlem4
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
41, 2, 3gausslemma2dlem1 25091 . 2 (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
5 eldif 3584 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ {2}))
6 prm23ge5 15520 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))
7 eleq1 2689 . . . . . . . . 9 (𝑃 = 2 → (𝑃 ∈ {2} ↔ 2 ∈ {2}))
87notbid 308 . . . . . . . 8 (𝑃 = 2 → (¬ 𝑃 ∈ {2} ↔ ¬ 2 ∈ {2}))
9 2ex 11092 . . . . . . . . . . . 12 2 ∈ V
109snid 4208 . . . . . . . . . . 11 2 ∈ {2}
11102a1i 12 . . . . . . . . . 10 (𝑃 = 2 → (∏𝑘 ∈ (1...𝐻)(𝑅𝑘) ≠ (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) → 2 ∈ {2}))
1211necon1bd 2812 . . . . . . . . 9 (𝑃 = 2 → (¬ 2 ∈ {2} → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
1312a1dd 50 . . . . . . . 8 (𝑃 = 2 → (¬ 2 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
148, 13sylbid 230 . . . . . . 7 (𝑃 = 2 → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
15 gausslemma2d.m . . . . . . . . . 10 𝑀 = (⌊‘(𝑃 / 4))
16 3lt4 11197 . . . . . . . . . . . 12 3 < 4
17 breq1 4656 . . . . . . . . . . . 12 (𝑃 = 3 → (𝑃 < 4 ↔ 3 < 4))
1816, 17mpbiri 248 . . . . . . . . . . 11 (𝑃 = 3 → 𝑃 < 4)
19 3nn0 11310 . . . . . . . . . . . . 13 3 ∈ ℕ0
20 eleq1 2689 . . . . . . . . . . . . 13 (𝑃 = 3 → (𝑃 ∈ ℕ0 ↔ 3 ∈ ℕ0))
2119, 20mpbiri 248 . . . . . . . . . . . 12 (𝑃 = 3 → 𝑃 ∈ ℕ0)
22 4nn 11187 . . . . . . . . . . . 12 4 ∈ ℕ
23 divfl0 12625 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ) → (𝑃 < 4 ↔ (⌊‘(𝑃 / 4)) = 0))
2421, 22, 23sylancl 694 . . . . . . . . . . 11 (𝑃 = 3 → (𝑃 < 4 ↔ (⌊‘(𝑃 / 4)) = 0))
2518, 24mpbid 222 . . . . . . . . . 10 (𝑃 = 3 → (⌊‘(𝑃 / 4)) = 0)
2615, 25syl5eq 2668 . . . . . . . . 9 (𝑃 = 3 → 𝑀 = 0)
27 oveq2 6658 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (1...𝑀) = (1...0))
2827adantr 481 . . . . . . . . . . . . . . 15 ((𝑀 = 0 ∧ 𝜑) → (1...𝑀) = (1...0))
29 fz10 12362 . . . . . . . . . . . . . . 15 (1...0) = ∅
3028, 29syl6eq 2672 . . . . . . . . . . . . . 14 ((𝑀 = 0 ∧ 𝜑) → (1...𝑀) = ∅)
3130prodeq1d 14651 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) = ∏𝑘 ∈ ∅ (𝑅𝑘))
32 prod0 14673 . . . . . . . . . . . . 13 𝑘 ∈ ∅ (𝑅𝑘) = 1
3331, 32syl6eq 2672 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) = 1)
34 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (𝑀 + 1) = (0 + 1))
3534adantr 481 . . . . . . . . . . . . . . 15 ((𝑀 = 0 ∧ 𝜑) → (𝑀 + 1) = (0 + 1))
36 0p1e1 11132 . . . . . . . . . . . . . . 15 (0 + 1) = 1
3735, 36syl6eq 2672 . . . . . . . . . . . . . 14 ((𝑀 = 0 ∧ 𝜑) → (𝑀 + 1) = 1)
3837oveq1d 6665 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ 𝜑) → ((𝑀 + 1)...𝐻) = (1...𝐻))
3938prodeq1d 14651 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
4033, 39oveq12d 6668 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝜑) → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) = (1 · ∏𝑘 ∈ (1...𝐻)(𝑅𝑘)))
41 fzfid 12772 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ 𝜑) → (1...𝐻) ∈ Fin)
423a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))))
43 oveq1 6657 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2))
4443breq1d 4663 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2)))
4543oveq2d 6666 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2)))
4644, 43, 45ifbieq12d 4113 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
4746adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (1...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
48 simpr 477 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑘 ∈ (1...𝐻))
49 elfzelz 12342 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℤ)
5049zcnd 11483 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℂ)
51 2cnd 11093 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝐻) → 2 ∈ ℂ)
5250, 51mulcld 10060 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝐻) → (𝑘 · 2) ∈ ℂ)
5352adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℂ)
54 eldifi 3732 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
55 prmz 15389 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
5655zcnd 11483 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
571, 54, 563syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℂ)
5857adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑃 ∈ ℂ)
5958, 53subcld 10392 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℂ)
6053, 59ifcld 4131 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝐻)) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) ∈ ℂ)
6142, 47, 48, 60fvmptd 6288 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑅𝑘) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
6261, 60eqeltrd 2701 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
6362adantll 750 . . . . . . . . . . . . 13 (((𝑀 = 0 ∧ 𝜑) ∧ 𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
6441, 63fprodcl 14682 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) ∈ ℂ)
6564mulid2d 10058 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝜑) → (1 · ∏𝑘 ∈ (1...𝐻)(𝑅𝑘)) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
6640, 65eqtr2d 2657 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
6766ex 450 . . . . . . . . 9 (𝑀 = 0 → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
6826, 67syl 17 . . . . . . . 8 (𝑃 = 3 → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
6968a1d 25 . . . . . . 7 (𝑃 = 3 → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
701, 15gausslemma2dlem0d 25084 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
7170nn0red 11352 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
7271ltp1d 10954 . . . . . . . . . . . 12 (𝜑𝑀 < (𝑀 + 1))
73 fzdisj 12368 . . . . . . . . . . . 12 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
7472, 73syl 17 . . . . . . . . . . 11 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
7574adantl 482 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
76 eluzelre 11698 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 𝑃 ∈ ℝ)
77 4re 11097 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℝ
7877a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 4 ∈ ℝ)
79 4ne0 11117 . . . . . . . . . . . . . . . . . . . . 21 4 ≠ 0
8079a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 4 ≠ 0)
8176, 78, 80redivcld 10853 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘5) → (𝑃 / 4) ∈ ℝ)
8281flcld 12599 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℤ‘5) → (⌊‘(𝑃 / 4)) ∈ ℤ)
83 nnrp 11842 . . . . . . . . . . . . . . . . . . . . 21 (4 ∈ ℕ → 4 ∈ ℝ+)
8422, 83ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 4 ∈ ℝ+
85 eluz2 11693 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ (ℤ‘5) ↔ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃))
86 4lt5 11200 . . . . . . . . . . . . . . . . . . . . . . 23 4 < 5
87 5re 11099 . . . . . . . . . . . . . . . . . . . . . . . . 25 5 ∈ ℝ
8887a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 5 ∈ ℝ)
89 zre 11381 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℤ → 𝑃 ∈ ℝ)
9089adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∈ ℝ)
91 ltleletr 10130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 ∈ ℝ ∧ 5 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((4 < 5 ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃))
9277, 88, 90, 91mp3an2i 1429 . . . . . . . . . . . . . . . . . . . . . . 23 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((4 < 5 ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃))
9386, 92mpani 712 . . . . . . . . . . . . . . . . . . . . . 22 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (5 ≤ 𝑃 → 4 ≤ 𝑃))
94933impia 1261 . . . . . . . . . . . . . . . . . . . . 21 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃)
9585, 94sylbi 207 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 4 ≤ 𝑃)
96 divge1 11898 . . . . . . . . . . . . . . . . . . . 20 ((4 ∈ ℝ+𝑃 ∈ ℝ ∧ 4 ≤ 𝑃) → 1 ≤ (𝑃 / 4))
9784, 76, 95, 96mp3an2i 1429 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘5) → 1 ≤ (𝑃 / 4))
98 1zzd 11408 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 1 ∈ ℤ)
99 flge 12606 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 / 4) ∈ ℝ ∧ 1 ∈ ℤ) → (1 ≤ (𝑃 / 4) ↔ 1 ≤ (⌊‘(𝑃 / 4))))
10081, 98, 99syl2anc 693 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘5) → (1 ≤ (𝑃 / 4) ↔ 1 ≤ (⌊‘(𝑃 / 4))))
10197, 100mpbid 222 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℤ‘5) → 1 ≤ (⌊‘(𝑃 / 4)))
102 elnnz1 11403 . . . . . . . . . . . . . . . . . 18 ((⌊‘(𝑃 / 4)) ∈ ℕ ↔ ((⌊‘(𝑃 / 4)) ∈ ℤ ∧ 1 ≤ (⌊‘(𝑃 / 4))))
10382, 101, 102sylanbrc 698 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘5) → (⌊‘(𝑃 / 4)) ∈ ℕ)
104103adantl 482 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → (⌊‘(𝑃 / 4)) ∈ ℕ)
105 oddprm 15515 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
106105adantr 481 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → ((𝑃 − 1) / 2) ∈ ℕ)
107 prmuz2 15408 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
10854, 107syl 17 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
109108adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → 𝑃 ∈ (ℤ‘2))
110 fldiv4lem1div2uz2 12637 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
111109, 110syl 17 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
112104, 106, 1113jca 1242 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
113112ex 450 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ (ℤ‘5) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))))
1141, 113syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑃 ∈ (ℤ‘5) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))))
115114impcom 446 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
1162oveq2i 6661 . . . . . . . . . . . . . 14 (1...𝐻) = (1...((𝑃 − 1) / 2))
11715, 116eleq12i 2694 . . . . . . . . . . . . 13 (𝑀 ∈ (1...𝐻) ↔ (⌊‘(𝑃 / 4)) ∈ (1...((𝑃 − 1) / 2)))
118 elfz1b 12409 . . . . . . . . . . . . 13 ((⌊‘(𝑃 / 4)) ∈ (1...((𝑃 − 1) / 2)) ↔ ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
119117, 118bitri 264 . . . . . . . . . . . 12 (𝑀 ∈ (1...𝐻) ↔ ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
120115, 119sylibr 224 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → 𝑀 ∈ (1...𝐻))
121 fzsplit 12367 . . . . . . . . . . 11 (𝑀 ∈ (1...𝐻) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
122120, 121syl 17 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
123 fzfid 12772 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → (1...𝐻) ∈ Fin)
12462adantll 750 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘5) ∧ 𝜑) ∧ 𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
12575, 122, 123, 124fprodsplit 14696 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
126125ex 450 . . . . . . . 8 (𝑃 ∈ (ℤ‘5) → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
127126a1d 25 . . . . . . 7 (𝑃 ∈ (ℤ‘5) → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
12814, 69, 1273jaoi 1391 . . . . . 6 ((𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)) → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
1296, 128syl 17 . . . . 5 (𝑃 ∈ ℙ → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
130129imp 445 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ {2}) → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
1315, 130sylbi 207 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
1321, 131mpcom 38 . 2 (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
1334, 132eqtrd 2656 1 (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cdif 3571  cun 3572  cin 3573  c0 3915  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  4c4 11072  5c5 11073  0cn0 11292  cz 11377  cuz 11687  +crp 11832  ...cfz 12326  cfl 12591  !cfa 13060  cprod 14635  cprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636  df-dvds 14984  df-prm 15386
This theorem is referenced by:  gausslemma2dlem6  25097
  Copyright terms: Public domain W3C validator