Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unirnmapsn Structured version   Visualization version   GIF version

Theorem unirnmapsn 39406
Description: Equality theorem for a subset of a set exponentiation, where the exponent is a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
unirnmapsn.A (𝜑𝐴𝑉)
unirnmapsn.b (𝜑𝐵𝑊)
unirnmapsn.C 𝐶 = {𝐴}
unirnmapsn.x (𝜑𝑋 ⊆ (𝐵𝑚 𝐶))
Assertion
Ref Expression
unirnmapsn (𝜑𝑋 = (ran 𝑋𝑚 𝐶))

Proof of Theorem unirnmapsn
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unirnmapsn.C . . . . 5 𝐶 = {𝐴}
2 snex 4908 . . . . 5 {𝐴} ∈ V
31, 2eqeltri 2697 . . . 4 𝐶 ∈ V
43a1i 11 . . 3 (𝜑𝐶 ∈ V)
5 unirnmapsn.x . . 3 (𝜑𝑋 ⊆ (𝐵𝑚 𝐶))
64, 5unirnmap 39400 . 2 (𝜑𝑋 ⊆ (ran 𝑋𝑚 𝐶))
7 simpl 473 . . . . . 6 ((𝜑𝑔 ∈ (ran 𝑋𝑚 𝐶)) → 𝜑)
8 equid 1939 . . . . . . . . 9 𝑔 = 𝑔
9 rnuni 5544 . . . . . . . . . 10 ran 𝑋 = 𝑓𝑋 ran 𝑓
109oveq1i 6660 . . . . . . . . 9 (ran 𝑋𝑚 𝐶) = ( 𝑓𝑋 ran 𝑓𝑚 𝐶)
118, 10eleq12i 2694 . . . . . . . 8 (𝑔 ∈ (ran 𝑋𝑚 𝐶) ↔ 𝑔 ∈ ( 𝑓𝑋 ran 𝑓𝑚 𝐶))
1211biimpi 206 . . . . . . 7 (𝑔 ∈ (ran 𝑋𝑚 𝐶) → 𝑔 ∈ ( 𝑓𝑋 ran 𝑓𝑚 𝐶))
1312adantl 482 . . . . . 6 ((𝜑𝑔 ∈ (ran 𝑋𝑚 𝐶)) → 𝑔 ∈ ( 𝑓𝑋 ran 𝑓𝑚 𝐶))
14 ovexd 6680 . . . . . . . . . . . 12 (𝜑 → (𝐵𝑚 𝐶) ∈ V)
1514, 5ssexd 4805 . . . . . . . . . . 11 (𝜑𝑋 ∈ V)
16 rnexg 7098 . . . . . . . . . . . . 13 (𝑓𝑋 → ran 𝑓 ∈ V)
1716rgen 2922 . . . . . . . . . . . 12 𝑓𝑋 ran 𝑓 ∈ V
1817a1i 11 . . . . . . . . . . 11 (𝜑 → ∀𝑓𝑋 ran 𝑓 ∈ V)
19 iunexg 7143 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ ∀𝑓𝑋 ran 𝑓 ∈ V) → 𝑓𝑋 ran 𝑓 ∈ V)
2015, 18, 19syl2anc 693 . . . . . . . . . 10 (𝜑 𝑓𝑋 ran 𝑓 ∈ V)
2120, 4elmapd 7871 . . . . . . . . 9 (𝜑 → (𝑔 ∈ ( 𝑓𝑋 ran 𝑓𝑚 𝐶) ↔ 𝑔:𝐶 𝑓𝑋 ran 𝑓))
2221biimpa 501 . . . . . . . 8 ((𝜑𝑔 ∈ ( 𝑓𝑋 ran 𝑓𝑚 𝐶)) → 𝑔:𝐶 𝑓𝑋 ran 𝑓)
23 unirnmapsn.A . . . . . . . . . . 11 (𝜑𝐴𝑉)
24 snidg 4206 . . . . . . . . . . 11 (𝐴𝑉𝐴 ∈ {𝐴})
2523, 24syl 17 . . . . . . . . . 10 (𝜑𝐴 ∈ {𝐴})
2625, 1syl6eleqr 2712 . . . . . . . . 9 (𝜑𝐴𝐶)
2726adantr 481 . . . . . . . 8 ((𝜑𝑔 ∈ ( 𝑓𝑋 ran 𝑓𝑚 𝐶)) → 𝐴𝐶)
2822, 27ffvelrnd 6360 . . . . . . 7 ((𝜑𝑔 ∈ ( 𝑓𝑋 ran 𝑓𝑚 𝐶)) → (𝑔𝐴) ∈ 𝑓𝑋 ran 𝑓)
29 eliun 4524 . . . . . . 7 ((𝑔𝐴) ∈ 𝑓𝑋 ran 𝑓 ↔ ∃𝑓𝑋 (𝑔𝐴) ∈ ran 𝑓)
3028, 29sylib 208 . . . . . 6 ((𝜑𝑔 ∈ ( 𝑓𝑋 ran 𝑓𝑚 𝐶)) → ∃𝑓𝑋 (𝑔𝐴) ∈ ran 𝑓)
317, 13, 30syl2anc 693 . . . . 5 ((𝜑𝑔 ∈ (ran 𝑋𝑚 𝐶)) → ∃𝑓𝑋 (𝑔𝐴) ∈ ran 𝑓)
32 elmapfn 7880 . . . . . . . 8 (𝑔 ∈ (ran 𝑋𝑚 𝐶) → 𝑔 Fn 𝐶)
3332adantl 482 . . . . . . 7 ((𝜑𝑔 ∈ (ran 𝑋𝑚 𝐶)) → 𝑔 Fn 𝐶)
34 simp3 1063 . . . . . . . . . . . . 13 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → (𝑔𝐴) ∈ ran 𝑓)
35233ad2ant1 1082 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝐴𝑉)
361oveq2i 6661 . . . . . . . . . . . . . . . . . . 19 (𝐵𝑚 𝐶) = (𝐵𝑚 {𝐴})
375, 36syl6sseq 3651 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ⊆ (𝐵𝑚 {𝐴}))
3837adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝑋) → 𝑋 ⊆ (𝐵𝑚 {𝐴}))
39 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝑋) → 𝑓𝑋)
4038, 39sseldd 3604 . . . . . . . . . . . . . . . 16 ((𝜑𝑓𝑋) → 𝑓 ∈ (𝐵𝑚 {𝐴}))
41 unirnmapsn.b . . . . . . . . . . . . . . . . . 18 (𝜑𝐵𝑊)
4241adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝑋) → 𝐵𝑊)
432a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝑋) → {𝐴} ∈ V)
4442, 43elmapd 7871 . . . . . . . . . . . . . . . 16 ((𝜑𝑓𝑋) → (𝑓 ∈ (𝐵𝑚 {𝐴}) ↔ 𝑓:{𝐴}⟶𝐵))
4540, 44mpbid 222 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝑋) → 𝑓:{𝐴}⟶𝐵)
46453adant3 1081 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑓:{𝐴}⟶𝐵)
4735, 46rnsnf 39370 . . . . . . . . . . . . 13 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → ran 𝑓 = {(𝑓𝐴)})
4834, 47eleqtrd 2703 . . . . . . . . . . . 12 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → (𝑔𝐴) ∈ {(𝑓𝐴)})
49 fvex 6201 . . . . . . . . . . . . 13 (𝑔𝐴) ∈ V
5049elsn 4192 . . . . . . . . . . . 12 ((𝑔𝐴) ∈ {(𝑓𝐴)} ↔ (𝑔𝐴) = (𝑓𝐴))
5148, 50sylib 208 . . . . . . . . . . 11 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → (𝑔𝐴) = (𝑓𝐴))
52513adant1r 1319 . . . . . . . . . 10 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → (𝑔𝐴) = (𝑓𝐴))
5323adantr 481 . . . . . . . . . . . 12 ((𝜑𝑔 Fn 𝐶) → 𝐴𝑉)
54533ad2ant1 1082 . . . . . . . . . . 11 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝐴𝑉)
55 simp1r 1086 . . . . . . . . . . 11 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑔 Fn 𝐶)
5640, 36syl6eleqr 2712 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑋) → 𝑓 ∈ (𝐵𝑚 𝐶))
57 elmapfn 7880 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝐵𝑚 𝐶) → 𝑓 Fn 𝐶)
5856, 57syl 17 . . . . . . . . . . . . 13 ((𝜑𝑓𝑋) → 𝑓 Fn 𝐶)
5958adantlr 751 . . . . . . . . . . . 12 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋) → 𝑓 Fn 𝐶)
60593adant3 1081 . . . . . . . . . . 11 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑓 Fn 𝐶)
6154, 1, 55, 60fsneq 39398 . . . . . . . . . 10 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → (𝑔 = 𝑓 ↔ (𝑔𝐴) = (𝑓𝐴)))
6252, 61mpbird 247 . . . . . . . . 9 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑔 = 𝑓)
63 simp2 1062 . . . . . . . . 9 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑓𝑋)
6462, 63eqeltrd 2701 . . . . . . . 8 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑔𝑋)
65643exp 1264 . . . . . . 7 ((𝜑𝑔 Fn 𝐶) → (𝑓𝑋 → ((𝑔𝐴) ∈ ran 𝑓𝑔𝑋)))
667, 33, 65syl2anc 693 . . . . . 6 ((𝜑𝑔 ∈ (ran 𝑋𝑚 𝐶)) → (𝑓𝑋 → ((𝑔𝐴) ∈ ran 𝑓𝑔𝑋)))
6766rexlimdv 3030 . . . . 5 ((𝜑𝑔 ∈ (ran 𝑋𝑚 𝐶)) → (∃𝑓𝑋 (𝑔𝐴) ∈ ran 𝑓𝑔𝑋))
6831, 67mpd 15 . . . 4 ((𝜑𝑔 ∈ (ran 𝑋𝑚 𝐶)) → 𝑔𝑋)
6968ralrimiva 2966 . . 3 (𝜑 → ∀𝑔 ∈ (ran 𝑋𝑚 𝐶)𝑔𝑋)
70 dfss3 3592 . . 3 ((ran 𝑋𝑚 𝐶) ⊆ 𝑋 ↔ ∀𝑔 ∈ (ran 𝑋𝑚 𝐶)𝑔𝑋)
7169, 70sylibr 224 . 2 (𝜑 → (ran 𝑋𝑚 𝐶) ⊆ 𝑋)
726, 71eqssd 3620 1 (𝜑𝑋 = (ran 𝑋𝑚 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574  {csn 4177   cuni 4436   ciun 4520  ran crn 5115   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator