MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq12i Structured version   Visualization version   Unicode version

Theorem eleq12i 2694
Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
Hypotheses
Ref Expression
eleq1i.1  |-  A  =  B
eleq12i.2  |-  C  =  D
Assertion
Ref Expression
eleq12i  |-  ( A  e.  C  <->  B  e.  D )

Proof of Theorem eleq12i
StepHypRef Expression
1 eleq12i.2 . . 3  |-  C  =  D
21eleq2i 2693 . 2  |-  ( A  e.  C  <->  A  e.  D )
3 eleq1i.1 . . 3  |-  A  =  B
43eleq1i 2692 . 2  |-  ( A  e.  D  <->  B  e.  D )
52, 4bitri 264 1  |-  ( A  e.  C  <->  B  e.  D )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483    e. wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-cleq 2615  df-clel 2618
This theorem is referenced by:  sbcel12  3983  zclmncvs  22948  gausslemma2dlem4  25094  bnj98  30937  elmpst  31433  elmpps  31470  sbcel12gOLD  38754  unirnmapsn  39406
  Copyright terms: Public domain W3C validator