MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasni Structured version   Visualization version   GIF version

Theorem elimasni 5492
Description: Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010.)
Assertion
Ref Expression
elimasni (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶)

Proof of Theorem elimasni
StepHypRef Expression
1 noel 3919 . . . . 5 ¬ 𝐶 ∈ ∅
2 snprc 4253 . . . . . . . . 9 𝐵 ∈ V ↔ {𝐵} = ∅)
32biimpi 206 . . . . . . . 8 𝐵 ∈ V → {𝐵} = ∅)
43imaeq2d 5466 . . . . . . 7 𝐵 ∈ V → (𝐴 “ {𝐵}) = (𝐴 “ ∅))
5 ima0 5481 . . . . . . 7 (𝐴 “ ∅) = ∅
64, 5syl6eq 2672 . . . . . 6 𝐵 ∈ V → (𝐴 “ {𝐵}) = ∅)
76eleq2d 2687 . . . . 5 𝐵 ∈ V → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ ∅))
81, 7mtbiri 317 . . . 4 𝐵 ∈ V → ¬ 𝐶 ∈ (𝐴 “ {𝐵}))
98con4i 113 . . 3 (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵 ∈ V)
10 elex 3212 . . 3 (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐶 ∈ V)
119, 10jca 554 . 2 (𝐶 ∈ (𝐴 “ {𝐵}) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
12 elimasng 5491 . . . 4 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
13 df-br 4654 . . . 4 (𝐵𝐴𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)
1412, 13syl6bbr 278 . . 3 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
1514biimpd 219 . 2 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶))
1611, 15mpcom 38 1 (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  {csn 4177  cop 4183   class class class wbr 4653  cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  dffv2  6271  poimirlem2  33411  poimirlem23  33432
  Copyright terms: Public domain W3C validator