| Step | Hyp | Ref
| Expression |
| 1 | | poimirlem2.3 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) |
| 2 | | dff1o3 6143 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (𝑈:(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡𝑈)) |
| 3 | 2 | simprbi 480 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡𝑈) |
| 4 | 1, 3 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → Fun ◡𝑈) |
| 5 | | imadif 5973 |
. . . . . . . . . . . . . . 15
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...𝑁) ∖ {(𝑉 + 1)})) = ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {(𝑉 + 1)}))) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 “ ((1...𝑁) ∖ {(𝑉 + 1)})) = ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {(𝑉 + 1)}))) |
| 7 | | poimirlem2.4 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑉 ∈ (1...(𝑁 − 1))) |
| 8 | | fzp1elp1 12394 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑉 ∈ (1...(𝑁 − 1)) → (𝑉 + 1) ∈ (1...((𝑁 − 1) + 1))) |
| 9 | 7, 8 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑉 + 1) ∈ (1...((𝑁 − 1) + 1))) |
| 10 | | poimir.0 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 11 | 10 | nncnd 11036 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 12 | | npcan1 10455 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
| 13 | 11, 12 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
| 14 | 13 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁)) |
| 15 | 9, 14 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑉 + 1) ∈ (1...𝑁)) |
| 16 | | fzsplit 12367 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑉 + 1) ∈ (1...𝑁) → (1...𝑁) = ((1...(𝑉 + 1)) ∪ (((𝑉 + 1) + 1)...𝑁))) |
| 17 | 15, 16 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1...𝑁) = ((1...(𝑉 + 1)) ∪ (((𝑉 + 1) + 1)...𝑁))) |
| 18 | 17 | difeq1d 3727 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((1...𝑁) ∖ {(𝑉 + 1)}) = (((1...(𝑉 + 1)) ∪ (((𝑉 + 1) + 1)...𝑁)) ∖ {(𝑉 + 1)})) |
| 19 | | difundir 3880 |
. . . . . . . . . . . . . . . . 17
⊢
(((1...(𝑉 + 1))
∪ (((𝑉 + 1) +
1)...𝑁)) ∖ {(𝑉 + 1)}) = (((1...(𝑉 + 1)) ∖ {(𝑉 + 1)}) ∪ ((((𝑉 + 1) + 1)...𝑁) ∖ {(𝑉 + 1)})) |
| 20 | | elfzuz 12338 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑉 ∈ (1...(𝑁 − 1)) → 𝑉 ∈
(ℤ≥‘1)) |
| 21 | 7, 20 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑉 ∈
(ℤ≥‘1)) |
| 22 | | fzsuc 12388 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑉 ∈
(ℤ≥‘1) → (1...(𝑉 + 1)) = ((1...𝑉) ∪ {(𝑉 + 1)})) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1...(𝑉 + 1)) = ((1...𝑉) ∪ {(𝑉 + 1)})) |
| 24 | 23 | difeq1d 3727 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((1...(𝑉 + 1)) ∖ {(𝑉 + 1)}) = (((1...𝑉) ∪ {(𝑉 + 1)}) ∖ {(𝑉 + 1)})) |
| 25 | | difun2 4048 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1...𝑉) ∪
{(𝑉 + 1)}) ∖ {(𝑉 + 1)}) = ((1...𝑉) ∖ {(𝑉 + 1)}) |
| 26 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑉 ∈ (1...(𝑁 − 1)) → 𝑉 ∈ ℤ) |
| 27 | 7, 26 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑉 ∈ ℤ) |
| 28 | 27 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑉 ∈ ℝ) |
| 29 | 28 | ltp1d 10954 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑉 < (𝑉 + 1)) |
| 30 | 27 | peano2zd 11485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑉 + 1) ∈ ℤ) |
| 31 | 30 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑉 + 1) ∈ ℝ) |
| 32 | 28, 31 | ltnled 10184 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑉 < (𝑉 + 1) ↔ ¬ (𝑉 + 1) ≤ 𝑉)) |
| 33 | 29, 32 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ¬ (𝑉 + 1) ≤ 𝑉) |
| 34 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑉 + 1) ∈ (1...𝑉) → (𝑉 + 1) ≤ 𝑉) |
| 35 | 33, 34 | nsyl 135 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ¬ (𝑉 + 1) ∈ (1...𝑉)) |
| 36 | | difsn 4328 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
(𝑉 + 1) ∈ (1...𝑉) → ((1...𝑉) ∖ {(𝑉 + 1)}) = (1...𝑉)) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((1...𝑉) ∖ {(𝑉 + 1)}) = (1...𝑉)) |
| 38 | 25, 37 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (((1...𝑉) ∪ {(𝑉 + 1)}) ∖ {(𝑉 + 1)}) = (1...𝑉)) |
| 39 | 24, 38 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((1...(𝑉 + 1)) ∖ {(𝑉 + 1)}) = (1...𝑉)) |
| 40 | 31 | ltp1d 10954 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑉 + 1) < ((𝑉 + 1) + 1)) |
| 41 | | peano2re 10209 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑉 + 1) ∈ ℝ →
((𝑉 + 1) + 1) ∈
ℝ) |
| 42 | 31, 41 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑉 + 1) + 1) ∈ ℝ) |
| 43 | 31, 42 | ltnled 10184 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑉 + 1) < ((𝑉 + 1) + 1) ↔ ¬ ((𝑉 + 1) + 1) ≤ (𝑉 + 1))) |
| 44 | 40, 43 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ¬ ((𝑉 + 1) + 1) ≤ (𝑉 + 1)) |
| 45 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑉 + 1) ∈ (((𝑉 + 1) + 1)...𝑁) → ((𝑉 + 1) + 1) ≤ (𝑉 + 1)) |
| 46 | 44, 45 | nsyl 135 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ (𝑉 + 1) ∈ (((𝑉 + 1) + 1)...𝑁)) |
| 47 | | difsn 4328 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
(𝑉 + 1) ∈ (((𝑉 + 1) + 1)...𝑁) → ((((𝑉 + 1) + 1)...𝑁) ∖ {(𝑉 + 1)}) = (((𝑉 + 1) + 1)...𝑁)) |
| 48 | 46, 47 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((((𝑉 + 1) + 1)...𝑁) ∖ {(𝑉 + 1)}) = (((𝑉 + 1) + 1)...𝑁)) |
| 49 | 39, 48 | uneq12d 3768 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((1...(𝑉 + 1)) ∖ {(𝑉 + 1)}) ∪ ((((𝑉 + 1) + 1)...𝑁) ∖ {(𝑉 + 1)})) = ((1...𝑉) ∪ (((𝑉 + 1) + 1)...𝑁))) |
| 50 | 19, 49 | syl5eq 2668 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((1...(𝑉 + 1)) ∪ (((𝑉 + 1) + 1)...𝑁)) ∖ {(𝑉 + 1)}) = ((1...𝑉) ∪ (((𝑉 + 1) + 1)...𝑁))) |
| 51 | 18, 50 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((1...𝑁) ∖ {(𝑉 + 1)}) = ((1...𝑉) ∪ (((𝑉 + 1) + 1)...𝑁))) |
| 52 | 51 | imaeq2d 5466 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 “ ((1...𝑁) ∖ {(𝑉 + 1)})) = (𝑈 “ ((1...𝑉) ∪ (((𝑉 + 1) + 1)...𝑁)))) |
| 53 | 6, 52 | eqtr3d 2658 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {(𝑉 + 1)})) = (𝑈 “ ((1...𝑉) ∪ (((𝑉 + 1) + 1)...𝑁)))) |
| 54 | | imaundi 5545 |
. . . . . . . . . . . . 13
⊢ (𝑈 “ ((1...𝑉) ∪ (((𝑉 + 1) + 1)...𝑁))) = ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) |
| 55 | 53, 54 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {(𝑉 + 1)})) = ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) |
| 56 | 55 | eleq2d 2687 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑛 ∈ ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {(𝑉 + 1)})) ↔ 𝑛 ∈ ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))))) |
| 57 | | eldif 3584 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {(𝑉 + 1)})) ↔ (𝑛 ∈ (𝑈 “ (1...𝑁)) ∧ ¬ 𝑛 ∈ (𝑈 “ {(𝑉 + 1)}))) |
| 58 | | elun 3753 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ↔ (𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) |
| 59 | 56, 57, 58 | 3bitr3g 302 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑛 ∈ (𝑈 “ (1...𝑁)) ∧ ¬ 𝑛 ∈ (𝑈 “ {(𝑉 + 1)})) ↔ (𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))))) |
| 60 | 59 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ((𝑛 ∈ (𝑈 “ (1...𝑁)) ∧ ¬ 𝑛 ∈ (𝑈 “ {(𝑉 + 1)})) ↔ (𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))))) |
| 61 | | imassrn 5477 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 “ (1...𝑉)) ⊆ ran 𝑈 |
| 62 | | f1of 6137 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)⟶(1...𝑁)) |
| 63 | 1, 62 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑈:(1...𝑁)⟶(1...𝑁)) |
| 64 | | frn 6053 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈:(1...𝑁)⟶(1...𝑁) → ran 𝑈 ⊆ (1...𝑁)) |
| 65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ran 𝑈 ⊆ (1...𝑁)) |
| 66 | 61, 65 | syl5ss 3614 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 “ (1...𝑉)) ⊆ (1...𝑁)) |
| 67 | 66 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → 𝑛 ∈ (1...𝑁)) |
| 68 | | poimirlem2.2 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑇:(1...𝑁)⟶ℤ) |
| 69 | | ffn 6045 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑇:(1...𝑁)⟶ℤ → 𝑇 Fn (1...𝑁)) |
| 70 | 68, 69 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 Fn (1...𝑁)) |
| 71 | 70 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → 𝑇 Fn (1...𝑁)) |
| 72 | | 1ex 10035 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
V |
| 73 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 ∈
V → ((𝑈 “
(1...𝑉)) × {1}) Fn
(𝑈 “ (1...𝑉))) |
| 74 | 72, 73 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 “ (1...𝑉)) × {1}) Fn (𝑈 “ (1...𝑉)) |
| 75 | | c0ex 10034 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ∈
V |
| 76 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ∈
V → ((𝑈 “
((𝑉 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑉 + 1)...𝑁))) |
| 77 | 75, 76 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑉 + 1)...𝑁)) |
| 78 | 74, 77 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑈 “ (1...𝑉)) × {1}) Fn (𝑈 “ (1...𝑉)) ∧ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑉 + 1)...𝑁))) |
| 79 | | imain 5974 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...𝑉) ∩ ((𝑉 + 1)...𝑁))) = ((𝑈 “ (1...𝑉)) ∩ (𝑈 “ ((𝑉 + 1)...𝑁)))) |
| 80 | 4, 79 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...𝑉) ∩ ((𝑉 + 1)...𝑁))) = ((𝑈 “ (1...𝑉)) ∩ (𝑈 “ ((𝑉 + 1)...𝑁)))) |
| 81 | | fzdisj 12368 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑉 < (𝑉 + 1) → ((1...𝑉) ∩ ((𝑉 + 1)...𝑁)) = ∅) |
| 82 | 29, 81 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...𝑉) ∩ ((𝑉 + 1)...𝑁)) = ∅) |
| 83 | 82 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ ((1...𝑉) ∩ ((𝑉 + 1)...𝑁))) = (𝑈 “ ∅)) |
| 84 | | ima0 5481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑈 “ ∅) =
∅ |
| 85 | 83, 84 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...𝑉) ∩ ((𝑉 + 1)...𝑁))) = ∅) |
| 86 | 80, 85 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑈 “ (1...𝑉)) ∩ (𝑈 “ ((𝑉 + 1)...𝑁))) = ∅) |
| 87 | | fnun 5997 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑈 “
(1...𝑉)) × {1}) Fn
(𝑈 “ (1...𝑉)) ∧ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑉 + 1)...𝑁))) ∧ ((𝑈 “ (1...𝑉)) ∩ (𝑈 “ ((𝑉 + 1)...𝑁))) = ∅) → (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ ((𝑉 + 1)...𝑁)))) |
| 88 | 78, 86, 87 | sylancr 695 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ ((𝑉 + 1)...𝑁)))) |
| 89 | | imaundi 5545 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑈 “ ((1...𝑉) ∪ ((𝑉 + 1)...𝑁))) = ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ ((𝑉 + 1)...𝑁))) |
| 90 | 10 | nnzd 11481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 91 | | peano2zm 11420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
| 92 | 90, 91 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
| 93 | | uzid 11702 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 94 | 92, 93 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 95 | | peano2uz 11741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 96 | 94, 95 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 97 | 13, 96 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
| 98 | | fzss2 12381 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
| 99 | 97, 98 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
| 100 | 99, 7 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑉 ∈ (1...𝑁)) |
| 101 | | fzsplit 12367 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑉 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑉) ∪ ((𝑉 + 1)...𝑁))) |
| 102 | 100, 101 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (1...𝑁) = ((1...𝑉) ∪ ((𝑉 + 1)...𝑁))) |
| 103 | 102 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...𝑉) ∪ ((𝑉 + 1)...𝑁)))) |
| 104 | | f1ofo 6144 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)–onto→(1...𝑁)) |
| 105 | 1, 104 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑈:(1...𝑁)–onto→(1...𝑁)) |
| 106 | | foima 6120 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑈:(1...𝑁)–onto→(1...𝑁) → (𝑈 “ (1...𝑁)) = (1...𝑁)) |
| 107 | 105, 106 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ (1...𝑁)) = (1...𝑁)) |
| 108 | 103, 107 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...𝑉) ∪ ((𝑉 + 1)...𝑁))) = (1...𝑁)) |
| 109 | 89, 108 | syl5eqr 2670 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ ((𝑉 + 1)...𝑁))) = (1...𝑁)) |
| 110 | 109 | fneq2d 5982 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ ((𝑉 + 1)...𝑁))) ↔ (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn (1...𝑁))) |
| 111 | 88, 110 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
| 112 | 111 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
| 113 | | fzfid 12772 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → (1...𝑁) ∈ Fin) |
| 114 | | inidm 3822 |
. . . . . . . . . . . . . . . 16
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
| 115 | | eqidd 2623 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) ∧ 𝑛 ∈ (1...𝑁)) → (𝑇‘𝑛) = (𝑇‘𝑛)) |
| 116 | | fvun1 6269 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑈 “ (1...𝑉)) × {1}) Fn (𝑈 “ (1...𝑉)) ∧ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑉 + 1)...𝑁)) ∧ (((𝑈 “ (1...𝑉)) ∩ (𝑈 “ ((𝑉 + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...𝑉)))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...𝑉)) × {1})‘𝑛)) |
| 117 | 74, 77, 116 | mp3an12 1414 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑈 “ (1...𝑉)) ∩ (𝑈 “ ((𝑉 + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...𝑉)) × {1})‘𝑛)) |
| 118 | 86, 117 | sylan 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...𝑉)) × {1})‘𝑛)) |
| 119 | 72 | fvconst2 6469 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (𝑈 “ (1...𝑉)) → (((𝑈 “ (1...𝑉)) × {1})‘𝑛) = 1) |
| 120 | 119 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → (((𝑈 “ (1...𝑉)) × {1})‘𝑛) = 1) |
| 121 | 118, 120 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = 1) |
| 122 | 121 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = 1) |
| 123 | 71, 112, 113, 113, 114, 115, 122 | ofval 6906 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 1)) |
| 124 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 ∈
V → ((𝑈 “
(1...(𝑉 + 1))) × {1})
Fn (𝑈 “ (1...(𝑉 + 1)))) |
| 125 | 72, 124 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 “ (1...(𝑉 + 1))) × {1}) Fn (𝑈 “ (1...(𝑉 + 1))) |
| 126 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ∈
V → ((𝑈 “
(((𝑉 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) |
| 127 | 75, 126 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑉 + 1) + 1)...𝑁)) |
| 128 | 125, 127 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑈 “ (1...(𝑉 + 1))) × {1}) Fn (𝑈 “ (1...(𝑉 + 1))) ∧ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) |
| 129 | | imain 5974 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...(𝑉 + 1)) ∩ (((𝑉 + 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑉 + 1))) ∩ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) |
| 130 | 4, 129 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...(𝑉 + 1)) ∩ (((𝑉 + 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑉 + 1))) ∩ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) |
| 131 | | fzdisj 12368 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑉 + 1) < ((𝑉 + 1) + 1) → ((1...(𝑉 + 1)) ∩ (((𝑉 + 1) + 1)...𝑁)) = ∅) |
| 132 | 40, 131 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...(𝑉 + 1)) ∩ (((𝑉 + 1) + 1)...𝑁)) = ∅) |
| 133 | 132 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ ((1...(𝑉 + 1)) ∩ (((𝑉 + 1) + 1)...𝑁))) = (𝑈 “ ∅)) |
| 134 | 133, 84 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...(𝑉 + 1)) ∩ (((𝑉 + 1) + 1)...𝑁))) = ∅) |
| 135 | 130, 134 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑈 “ (1...(𝑉 + 1))) ∩ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) = ∅) |
| 136 | | fnun 5997 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑈 “
(1...(𝑉 + 1))) × {1})
Fn (𝑈 “ (1...(𝑉 + 1))) ∧ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ∧ ((𝑈 “ (1...(𝑉 + 1))) ∩ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) = ∅) → (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑉 + 1))) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) |
| 137 | 128, 135,
136 | sylancr 695 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑉 + 1))) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) |
| 138 | | imaundi 5545 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑈 “ ((1...(𝑉 + 1)) ∪ (((𝑉 + 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑉 + 1))) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) |
| 139 | 17 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...(𝑉 + 1)) ∪ (((𝑉 + 1) + 1)...𝑁)))) |
| 140 | 139, 107 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...(𝑉 + 1)) ∪ (((𝑉 + 1) + 1)...𝑁))) = (1...𝑁)) |
| 141 | 138, 140 | syl5eqr 2670 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑈 “ (1...(𝑉 + 1))) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) = (1...𝑁)) |
| 142 | 141 | fneq2d 5982 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑉 + 1))) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ↔ (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁))) |
| 143 | 137, 142 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
| 144 | 143 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
| 145 | | uzid 11702 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑉 ∈ ℤ → 𝑉 ∈
(ℤ≥‘𝑉)) |
| 146 | 27, 145 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑉 ∈ (ℤ≥‘𝑉)) |
| 147 | | peano2uz 11741 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑉 ∈
(ℤ≥‘𝑉) → (𝑉 + 1) ∈
(ℤ≥‘𝑉)) |
| 148 | 146, 147 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑉 + 1) ∈
(ℤ≥‘𝑉)) |
| 149 | | fzss2 12381 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑉 + 1) ∈
(ℤ≥‘𝑉) → (1...𝑉) ⊆ (1...(𝑉 + 1))) |
| 150 | 148, 149 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1...𝑉) ⊆ (1...(𝑉 + 1))) |
| 151 | | imass2 5501 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1...𝑉) ⊆
(1...(𝑉 + 1)) → (𝑈 “ (1...𝑉)) ⊆ (𝑈 “ (1...(𝑉 + 1)))) |
| 152 | 150, 151 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑈 “ (1...𝑉)) ⊆ (𝑈 “ (1...(𝑉 + 1)))) |
| 153 | 152 | sselda 3603 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → 𝑛 ∈ (𝑈 “ (1...(𝑉 + 1)))) |
| 154 | | fvun1 6269 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑈 “ (1...(𝑉 + 1))) × {1}) Fn (𝑈 “ (1...(𝑉 + 1))) ∧ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑉 + 1) + 1)...𝑁)) ∧ (((𝑈 “ (1...(𝑉 + 1))) ∩ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 + 1))))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑉 + 1))) × {1})‘𝑛)) |
| 155 | 125, 127,
154 | mp3an12 1414 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑈 “ (1...(𝑉 + 1))) ∩ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 + 1)))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑉 + 1))) × {1})‘𝑛)) |
| 156 | 135, 155 | sylan 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 + 1)))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑉 + 1))) × {1})‘𝑛)) |
| 157 | 72 | fvconst2 6469 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ (𝑈 “ (1...(𝑉 + 1))) → (((𝑈 “ (1...(𝑉 + 1))) × {1})‘𝑛) = 1) |
| 158 | 157 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 + 1)))) → (((𝑈 “ (1...(𝑉 + 1))) × {1})‘𝑛) = 1) |
| 159 | 156, 158 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 + 1)))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = 1) |
| 160 | 153, 159 | syldan 487 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = 1) |
| 161 | 160 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = 1) |
| 162 | 71, 144, 113, 113, 114, 115, 161 | ofval 6906 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 1)) |
| 163 | 123, 162 | eqtr4d 2659 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
| 164 | 67, 163 | mpdan 702 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
| 165 | | imassrn 5477 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)) ⊆ ran 𝑈 |
| 166 | 165, 65 | syl5ss 3614 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 “ (((𝑉 + 1) + 1)...𝑁)) ⊆ (1...𝑁)) |
| 167 | 166 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → 𝑛 ∈ (1...𝑁)) |
| 168 | 70 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → 𝑇 Fn (1...𝑁)) |
| 169 | 111 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
| 170 | | fzfid 12772 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → (1...𝑁) ∈ Fin) |
| 171 | | eqidd 2623 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → (𝑇‘𝑛) = (𝑇‘𝑛)) |
| 172 | | uzid 11702 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑉 + 1) ∈ ℤ →
(𝑉 + 1) ∈
(ℤ≥‘(𝑉 + 1))) |
| 173 | 30, 172 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑉 + 1) ∈
(ℤ≥‘(𝑉 + 1))) |
| 174 | | peano2uz 11741 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑉 + 1) ∈
(ℤ≥‘(𝑉 + 1)) → ((𝑉 + 1) + 1) ∈
(ℤ≥‘(𝑉 + 1))) |
| 175 | 173, 174 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑉 + 1) + 1) ∈
(ℤ≥‘(𝑉 + 1))) |
| 176 | | fzss1 12380 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑉 + 1) + 1) ∈
(ℤ≥‘(𝑉 + 1)) → (((𝑉 + 1) + 1)...𝑁) ⊆ ((𝑉 + 1)...𝑁)) |
| 177 | 175, 176 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (((𝑉 + 1) + 1)...𝑁) ⊆ ((𝑉 + 1)...𝑁)) |
| 178 | | imass2 5501 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑉 + 1) + 1)...𝑁) ⊆ ((𝑉 + 1)...𝑁) → (𝑈 “ (((𝑉 + 1) + 1)...𝑁)) ⊆ (𝑈 “ ((𝑉 + 1)...𝑁))) |
| 179 | 177, 178 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑈 “ (((𝑉 + 1) + 1)...𝑁)) ⊆ (𝑈 “ ((𝑉 + 1)...𝑁))) |
| 180 | 179 | sselda 3603 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) |
| 181 | | fvun2 6270 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑈 “ (1...𝑉)) × {1}) Fn (𝑈 “ (1...𝑉)) ∧ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑉 + 1)...𝑁)) ∧ (((𝑈 “ (1...𝑉)) ∩ (𝑈 “ ((𝑉 + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁)))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})‘𝑛)) |
| 182 | 74, 77, 181 | mp3an12 1414 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑈 “ (1...𝑉)) ∩ (𝑈 “ ((𝑉 + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})‘𝑛)) |
| 183 | 86, 182 | sylan 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})‘𝑛)) |
| 184 | 75 | fvconst2 6469 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁)) → (((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})‘𝑛) = 0) |
| 185 | 184 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → (((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})‘𝑛) = 0) |
| 186 | 183, 185 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = 0) |
| 187 | 180, 186 | syldan 487 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = 0) |
| 188 | 187 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = 0) |
| 189 | 168, 169,
170, 170, 114, 171, 188 | ofval 6906 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 0)) |
| 190 | 143 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
| 191 | | fvun2 6270 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑈 “ (1...(𝑉 + 1))) × {1}) Fn (𝑈 “ (1...(𝑉 + 1))) ∧ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑉 + 1) + 1)...𝑁)) ∧ (((𝑈 “ (1...(𝑉 + 1))) ∩ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})‘𝑛)) |
| 192 | 125, 127,
191 | mp3an12 1414 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑈 “ (1...(𝑉 + 1))) ∩ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})‘𝑛)) |
| 193 | 135, 192 | sylan 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})‘𝑛)) |
| 194 | 75 | fvconst2 6469 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)) → (((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})‘𝑛) = 0) |
| 195 | 194 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → (((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})‘𝑛) = 0) |
| 196 | 193, 195 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = 0) |
| 197 | 196 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = 0) |
| 198 | 168, 190,
170, 170, 114, 171, 197 | ofval 6906 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 0)) |
| 199 | 189, 198 | eqtr4d 2659 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
| 200 | 167, 199 | mpdan 702 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
| 201 | 164, 200 | jaodan 826 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
| 202 | 201 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ (𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
| 203 | | poimirlem2.1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 204 | 203 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 205 | | vex 3203 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ V |
| 206 | | ovex 6678 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 + 1) ∈ V |
| 207 | 205, 206 | ifex 4156 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) ∈ V |
| 208 | 207 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = (𝑉 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) ∈ V) |
| 209 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = (𝑉 − 1) → (𝑦 < 𝑀 ↔ (𝑉 − 1) < 𝑀)) |
| 210 | 209 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 = (𝑉 − 1)) → (𝑦 < 𝑀 ↔ (𝑉 − 1) < 𝑀)) |
| 211 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 = (𝑉 − 1)) → 𝑦 = (𝑉 − 1)) |
| 212 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = (𝑉 − 1) → (𝑦 + 1) = ((𝑉 − 1) + 1)) |
| 213 | 27 | zcnd 11483 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑉 ∈ ℂ) |
| 214 | | npcan1 10455 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑉 ∈ ℂ → ((𝑉 − 1) + 1) = 𝑉) |
| 215 | 213, 214 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑉 − 1) + 1) = 𝑉) |
| 216 | 212, 215 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 = (𝑉 − 1)) → (𝑦 + 1) = 𝑉) |
| 217 | 210, 211,
216 | ifbieq12d 4113 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 = (𝑉 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = if((𝑉 − 1) < 𝑀, (𝑉 − 1), 𝑉)) |
| 218 | 217 | adantlr 751 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = (𝑉 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = if((𝑉 − 1) < 𝑀, (𝑉 − 1), 𝑉)) |
| 219 | | poimirlem2.5 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑀 ∈ ((0...𝑁) ∖ {𝑉})) |
| 220 | 219 | eldifad 3586 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) |
| 221 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ) |
| 222 | 220, 221 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 223 | | zltlem1 11430 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑀 ∈ ℤ ∧ 𝑉 ∈ ℤ) → (𝑀 < 𝑉 ↔ 𝑀 ≤ (𝑉 − 1))) |
| 224 | 222, 27, 223 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑀 < 𝑉 ↔ 𝑀 ≤ (𝑉 − 1))) |
| 225 | 222 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 226 | | peano2zm 11420 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑉 ∈ ℤ → (𝑉 − 1) ∈
ℤ) |
| 227 | 27, 226 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑉 − 1) ∈ ℤ) |
| 228 | 227 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑉 − 1) ∈ ℝ) |
| 229 | 225, 228 | lenltd 10183 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑀 ≤ (𝑉 − 1) ↔ ¬ (𝑉 − 1) < 𝑀)) |
| 230 | 224, 229 | bitrd 268 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑀 < 𝑉 ↔ ¬ (𝑉 − 1) < 𝑀)) |
| 231 | 230 | biimpa 501 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ¬ (𝑉 − 1) < 𝑀) |
| 232 | 231 | iffalsed 4097 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → if((𝑉 − 1) < 𝑀, (𝑉 − 1), 𝑉) = 𝑉) |
| 233 | 232 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = (𝑉 − 1)) → if((𝑉 − 1) < 𝑀, (𝑉 − 1), 𝑉) = 𝑉) |
| 234 | 218, 233 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = (𝑉 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = 𝑉) |
| 235 | 234 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = (𝑉 − 1)) → (𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) ↔ 𝑗 = 𝑉)) |
| 236 | 235 | biimpa 501 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = (𝑉 − 1)) ∧ 𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1))) → 𝑗 = 𝑉) |
| 237 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑉 → (1...𝑗) = (1...𝑉)) |
| 238 | 237 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑉 → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...𝑉))) |
| 239 | 238 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑉 → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...𝑉)) × {1})) |
| 240 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑉 → (𝑗 + 1) = (𝑉 + 1)) |
| 241 | 240 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑉 → ((𝑗 + 1)...𝑁) = ((𝑉 + 1)...𝑁)) |
| 242 | 241 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑉 → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ ((𝑉 + 1)...𝑁))) |
| 243 | 242 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑉 → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) |
| 244 | 239, 243 | uneq12d 3768 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑉 → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))) |
| 245 | 244 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑉 → (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))) |
| 246 | 236, 245 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = (𝑉 − 1)) ∧ 𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1))) → (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))) |
| 247 | 208, 246 | csbied 3560 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = (𝑉 − 1)) → ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))) |
| 248 | | elfzm1b 12418 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑉 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑉 ∈ (1...𝑁) ↔ (𝑉 − 1) ∈ (0...(𝑁 − 1)))) |
| 249 | 27, 90, 248 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑉 ∈ (1...𝑁) ↔ (𝑉 − 1) ∈ (0...(𝑁 − 1)))) |
| 250 | 100, 249 | mpbid 222 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑉 − 1) ∈ (0...(𝑁 − 1))) |
| 251 | 250 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → (𝑉 − 1) ∈ (0...(𝑁 − 1))) |
| 252 | | ovexd 6680 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))) ∈ V) |
| 253 | 204, 247,
251, 252 | fvmptd 6288 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → (𝐹‘(𝑉 − 1)) = (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))) |
| 254 | 253 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
| 255 | 254 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ (𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
| 256 | 207 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = 𝑉) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) ∈ V) |
| 257 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑉 → (𝑦 < 𝑀 ↔ 𝑉 < 𝑀)) |
| 258 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑉 → 𝑦 = 𝑉) |
| 259 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑉 → (𝑦 + 1) = (𝑉 + 1)) |
| 260 | 257, 258,
259 | ifbieq12d 4113 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑉 → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = if(𝑉 < 𝑀, 𝑉, (𝑉 + 1))) |
| 261 | | ltnsym 10135 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑀 ∈ ℝ ∧ 𝑉 ∈ ℝ) → (𝑀 < 𝑉 → ¬ 𝑉 < 𝑀)) |
| 262 | 225, 28, 261 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑀 < 𝑉 → ¬ 𝑉 < 𝑀)) |
| 263 | 262 | imp 445 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ¬ 𝑉 < 𝑀) |
| 264 | 263 | iffalsed 4097 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → if(𝑉 < 𝑀, 𝑉, (𝑉 + 1)) = (𝑉 + 1)) |
| 265 | 260, 264 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = 𝑉) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = (𝑉 + 1)) |
| 266 | 265 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = 𝑉) → (𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) ↔ 𝑗 = (𝑉 + 1))) |
| 267 | 266 | biimpa 501 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = 𝑉) ∧ 𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1))) → 𝑗 = (𝑉 + 1)) |
| 268 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑉 + 1) → (1...𝑗) = (1...(𝑉 + 1))) |
| 269 | 268 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑉 + 1) → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...(𝑉 + 1)))) |
| 270 | 269 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑉 + 1) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑉 + 1))) × {1})) |
| 271 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑉 + 1) → (𝑗 + 1) = ((𝑉 + 1) + 1)) |
| 272 | 271 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑉 + 1) → ((𝑗 + 1)...𝑁) = (((𝑉 + 1) + 1)...𝑁)) |
| 273 | 272 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑉 + 1) → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) |
| 274 | 273 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑉 + 1) → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})) |
| 275 | 270, 274 | uneq12d 3768 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = (𝑉 + 1) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))) |
| 276 | 275 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑉 + 1) → (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))) |
| 277 | 267, 276 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = 𝑉) ∧ 𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1))) → (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))) |
| 278 | 256, 277 | csbied 3560 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = 𝑉) → ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))) |
| 279 | | 1eluzge0 11732 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
(ℤ≥‘0) |
| 280 | | fzss1 12380 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
(ℤ≥‘0) → (1...(𝑁 − 1)) ⊆ (0...(𝑁 − 1))) |
| 281 | 279, 280 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(1...(𝑁 − 1))
⊆ (0...(𝑁 −
1)) |
| 282 | 281, 7 | sseldi 3601 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑉 ∈ (0...(𝑁 − 1))) |
| 283 | 282 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → 𝑉 ∈ (0...(𝑁 − 1))) |
| 284 | | ovexd 6680 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → (𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))) ∈ V) |
| 285 | 204, 278,
283, 284 | fvmptd 6288 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → (𝐹‘𝑉) = (𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))) |
| 286 | 285 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ((𝐹‘𝑉)‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
| 287 | 286 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ (𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) → ((𝐹‘𝑉)‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
| 288 | 202, 255,
287 | 3eqtr4d 2666 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ (𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝐹‘𝑉)‘𝑛)) |
| 289 | 288 | ex 450 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ((𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝐹‘𝑉)‘𝑛))) |
| 290 | 60, 289 | sylbid 230 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ((𝑛 ∈ (𝑈 “ (1...𝑁)) ∧ ¬ 𝑛 ∈ (𝑈 “ {(𝑉 + 1)})) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝐹‘𝑉)‘𝑛))) |
| 291 | 290 | expdimp 453 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑛 ∈ (𝑈 “ (1...𝑁))) → (¬ 𝑛 ∈ (𝑈 “ {(𝑉 + 1)}) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝐹‘𝑉)‘𝑛))) |
| 292 | 291 | necon1ad 2811 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑛 ∈ (𝑈 “ (1...𝑁))) → (((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 ∈ (𝑈 “ {(𝑉 + 1)}))) |
| 293 | | elimasni 5492 |
. . . . . . . 8
⊢ (𝑛 ∈ (𝑈 “ {(𝑉 + 1)}) → (𝑉 + 1)𝑈𝑛) |
| 294 | | eqcom 2629 |
. . . . . . . . 9
⊢ (𝑛 = (𝑈‘(𝑉 + 1)) ↔ (𝑈‘(𝑉 + 1)) = 𝑛) |
| 295 | | f1ofn 6138 |
. . . . . . . . . . 11
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈 Fn (1...𝑁)) |
| 296 | 1, 295 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 Fn (1...𝑁)) |
| 297 | | fnbrfvb 6236 |
. . . . . . . . . 10
⊢ ((𝑈 Fn (1...𝑁) ∧ (𝑉 + 1) ∈ (1...𝑁)) → ((𝑈‘(𝑉 + 1)) = 𝑛 ↔ (𝑉 + 1)𝑈𝑛)) |
| 298 | 296, 15, 297 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑈‘(𝑉 + 1)) = 𝑛 ↔ (𝑉 + 1)𝑈𝑛)) |
| 299 | 294, 298 | syl5bb 272 |
. . . . . . . 8
⊢ (𝜑 → (𝑛 = (𝑈‘(𝑉 + 1)) ↔ (𝑉 + 1)𝑈𝑛)) |
| 300 | 293, 299 | syl5ibr 236 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ (𝑈 “ {(𝑉 + 1)}) → 𝑛 = (𝑈‘(𝑉 + 1)))) |
| 301 | 300 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑛 ∈ (𝑈 “ (1...𝑁))) → (𝑛 ∈ (𝑈 “ {(𝑉 + 1)}) → 𝑛 = (𝑈‘(𝑉 + 1)))) |
| 302 | 292, 301 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑛 ∈ (𝑈 “ (1...𝑁))) → (((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘(𝑉 + 1)))) |
| 303 | 302 | ralrimiva 2966 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘(𝑉 + 1)))) |
| 304 | | fvex 6201 |
. . . . 5
⊢ (𝑈‘(𝑉 + 1)) ∈ V |
| 305 | | eqeq2 2633 |
. . . . . . 7
⊢ (𝑚 = (𝑈‘(𝑉 + 1)) → (𝑛 = 𝑚 ↔ 𝑛 = (𝑈‘(𝑉 + 1)))) |
| 306 | 305 | imbi2d 330 |
. . . . . 6
⊢ (𝑚 = (𝑈‘(𝑉 + 1)) → ((((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚) ↔ (((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘(𝑉 + 1))))) |
| 307 | 306 | ralbidv 2986 |
. . . . 5
⊢ (𝑚 = (𝑈‘(𝑉 + 1)) → (∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚) ↔ ∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘(𝑉 + 1))))) |
| 308 | 304, 307 | spcev 3300 |
. . . 4
⊢
(∀𝑛 ∈
(𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘(𝑉 + 1))) → ∃𝑚∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚)) |
| 309 | 303, 308 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ∃𝑚∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚)) |
| 310 | | imadif 5973 |
. . . . . . . . . . . . . . 15
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...𝑁) ∖ {𝑉})) = ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑉}))) |
| 311 | 4, 310 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 “ ((1...𝑁) ∖ {𝑉})) = ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑉}))) |
| 312 | 102 | difeq1d 3727 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((1...𝑁) ∖ {𝑉}) = (((1...𝑉) ∪ ((𝑉 + 1)...𝑁)) ∖ {𝑉})) |
| 313 | | difundir 3880 |
. . . . . . . . . . . . . . . . 17
⊢
(((1...𝑉) ∪
((𝑉 + 1)...𝑁)) ∖ {𝑉}) = (((1...𝑉) ∖ {𝑉}) ∪ (((𝑉 + 1)...𝑁) ∖ {𝑉})) |
| 314 | 215, 21 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑉 − 1) + 1) ∈
(ℤ≥‘1)) |
| 315 | | uzid 11702 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑉 − 1) ∈ ℤ
→ (𝑉 − 1) ∈
(ℤ≥‘(𝑉 − 1))) |
| 316 | 227, 315 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑉 − 1) ∈
(ℤ≥‘(𝑉 − 1))) |
| 317 | | peano2uz 11741 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑉 − 1) ∈
(ℤ≥‘(𝑉 − 1)) → ((𝑉 − 1) + 1) ∈
(ℤ≥‘(𝑉 − 1))) |
| 318 | 316, 317 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑉 − 1) + 1) ∈
(ℤ≥‘(𝑉 − 1))) |
| 319 | 215, 318 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑉 ∈ (ℤ≥‘(𝑉 − 1))) |
| 320 | | fzsplit2 12366 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑉 − 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑉 ∈ (ℤ≥‘(𝑉 − 1))) → (1...𝑉) = ((1...(𝑉 − 1)) ∪ (((𝑉 − 1) + 1)...𝑉))) |
| 321 | 314, 319,
320 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (1...𝑉) = ((1...(𝑉 − 1)) ∪ (((𝑉 − 1) + 1)...𝑉))) |
| 322 | 215 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (((𝑉 − 1) + 1)...𝑉) = (𝑉...𝑉)) |
| 323 | | fzsn 12383 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑉 ∈ ℤ → (𝑉...𝑉) = {𝑉}) |
| 324 | 27, 323 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑉...𝑉) = {𝑉}) |
| 325 | 322, 324 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝑉 − 1) + 1)...𝑉) = {𝑉}) |
| 326 | 325 | uneq2d 3767 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((1...(𝑉 − 1)) ∪ (((𝑉 − 1) + 1)...𝑉)) = ((1...(𝑉 − 1)) ∪ {𝑉})) |
| 327 | 321, 326 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1...𝑉) = ((1...(𝑉 − 1)) ∪ {𝑉})) |
| 328 | 327 | difeq1d 3727 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((1...𝑉) ∖ {𝑉}) = (((1...(𝑉 − 1)) ∪ {𝑉}) ∖ {𝑉})) |
| 329 | | difun2 4048 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1...(𝑉 −
1)) ∪ {𝑉}) ∖
{𝑉}) = ((1...(𝑉 − 1)) ∖ {𝑉}) |
| 330 | 28 | ltm1d 10956 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑉 − 1) < 𝑉) |
| 331 | 228, 28 | ltnled 10184 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑉 − 1) < 𝑉 ↔ ¬ 𝑉 ≤ (𝑉 − 1))) |
| 332 | 330, 331 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ¬ 𝑉 ≤ (𝑉 − 1)) |
| 333 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑉 ∈ (1...(𝑉 − 1)) → 𝑉 ≤ (𝑉 − 1)) |
| 334 | 332, 333 | nsyl 135 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ¬ 𝑉 ∈ (1...(𝑉 − 1))) |
| 335 | | difsn 4328 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
𝑉 ∈ (1...(𝑉 − 1)) → ((1...(𝑉 − 1)) ∖ {𝑉}) = (1...(𝑉 − 1))) |
| 336 | 334, 335 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((1...(𝑉 − 1)) ∖ {𝑉}) = (1...(𝑉 − 1))) |
| 337 | 329, 336 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (((1...(𝑉 − 1)) ∪ {𝑉}) ∖ {𝑉}) = (1...(𝑉 − 1))) |
| 338 | 328, 337 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((1...𝑉) ∖ {𝑉}) = (1...(𝑉 − 1))) |
| 339 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑉 ∈ ((𝑉 + 1)...𝑁) → (𝑉 + 1) ≤ 𝑉) |
| 340 | 33, 339 | nsyl 135 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ 𝑉 ∈ ((𝑉 + 1)...𝑁)) |
| 341 | | difsn 4328 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑉 ∈ ((𝑉 + 1)...𝑁) → (((𝑉 + 1)...𝑁) ∖ {𝑉}) = ((𝑉 + 1)...𝑁)) |
| 342 | 340, 341 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝑉 + 1)...𝑁) ∖ {𝑉}) = ((𝑉 + 1)...𝑁)) |
| 343 | 338, 342 | uneq12d 3768 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((1...𝑉) ∖ {𝑉}) ∪ (((𝑉 + 1)...𝑁) ∖ {𝑉})) = ((1...(𝑉 − 1)) ∪ ((𝑉 + 1)...𝑁))) |
| 344 | 313, 343 | syl5eq 2668 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((1...𝑉) ∪ ((𝑉 + 1)...𝑁)) ∖ {𝑉}) = ((1...(𝑉 − 1)) ∪ ((𝑉 + 1)...𝑁))) |
| 345 | 312, 344 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((1...𝑁) ∖ {𝑉}) = ((1...(𝑉 − 1)) ∪ ((𝑉 + 1)...𝑁))) |
| 346 | 345 | imaeq2d 5466 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 “ ((1...𝑁) ∖ {𝑉})) = (𝑈 “ ((1...(𝑉 − 1)) ∪ ((𝑉 + 1)...𝑁)))) |
| 347 | 311, 346 | eqtr3d 2658 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑉})) = (𝑈 “ ((1...(𝑉 − 1)) ∪ ((𝑉 + 1)...𝑁)))) |
| 348 | | imaundi 5545 |
. . . . . . . . . . . . 13
⊢ (𝑈 “ ((1...(𝑉 − 1)) ∪ ((𝑉 + 1)...𝑁))) = ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ ((𝑉 + 1)...𝑁))) |
| 349 | 347, 348 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑉})) = ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ ((𝑉 + 1)...𝑁)))) |
| 350 | 349 | eleq2d 2687 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑛 ∈ ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑉})) ↔ 𝑛 ∈ ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ ((𝑉 + 1)...𝑁))))) |
| 351 | | eldif 3584 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑉})) ↔ (𝑛 ∈ (𝑈 “ (1...𝑁)) ∧ ¬ 𝑛 ∈ (𝑈 “ {𝑉}))) |
| 352 | | elun 3753 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ ((𝑉 + 1)...𝑁))) ↔ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁)))) |
| 353 | 350, 351,
352 | 3bitr3g 302 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑛 ∈ (𝑈 “ (1...𝑁)) ∧ ¬ 𝑛 ∈ (𝑈 “ {𝑉})) ↔ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))))) |
| 354 | 353 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → ((𝑛 ∈ (𝑈 “ (1...𝑁)) ∧ ¬ 𝑛 ∈ (𝑈 “ {𝑉})) ↔ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))))) |
| 355 | | imassrn 5477 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 “ (1...(𝑉 − 1))) ⊆ ran 𝑈 |
| 356 | 355, 65 | syl5ss 3614 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 “ (1...(𝑉 − 1))) ⊆ (1...𝑁)) |
| 357 | 356 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → 𝑛 ∈ (1...𝑁)) |
| 358 | 70 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → 𝑇 Fn (1...𝑁)) |
| 359 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 ∈
V → ((𝑈 “
(1...(𝑉 − 1)))
× {1}) Fn (𝑈 “
(1...(𝑉 −
1)))) |
| 360 | 72, 359 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 “ (1...(𝑉 − 1))) × {1}) Fn (𝑈 “ (1...(𝑉 − 1))) |
| 361 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ∈
V → ((𝑈 “ (𝑉...𝑁)) × {0}) Fn (𝑈 “ (𝑉...𝑁))) |
| 362 | 75, 361 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 “ (𝑉...𝑁)) × {0}) Fn (𝑈 “ (𝑉...𝑁)) |
| 363 | 360, 362 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑈 “ (1...(𝑉 − 1))) × {1}) Fn (𝑈 “ (1...(𝑉 − 1))) ∧ ((𝑈 “ (𝑉...𝑁)) × {0}) Fn (𝑈 “ (𝑉...𝑁))) |
| 364 | | imain 5974 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...(𝑉 − 1)) ∩ (𝑉...𝑁))) = ((𝑈 “ (1...(𝑉 − 1))) ∩ (𝑈 “ (𝑉...𝑁)))) |
| 365 | 4, 364 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...(𝑉 − 1)) ∩ (𝑉...𝑁))) = ((𝑈 “ (1...(𝑉 − 1))) ∩ (𝑈 “ (𝑉...𝑁)))) |
| 366 | | fzdisj 12368 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑉 − 1) < 𝑉 → ((1...(𝑉 − 1)) ∩ (𝑉...𝑁)) = ∅) |
| 367 | 330, 366 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...(𝑉 − 1)) ∩ (𝑉...𝑁)) = ∅) |
| 368 | 367 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ ((1...(𝑉 − 1)) ∩ (𝑉...𝑁))) = (𝑈 “ ∅)) |
| 369 | 368, 84 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...(𝑉 − 1)) ∩ (𝑉...𝑁))) = ∅) |
| 370 | 365, 369 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑈 “ (1...(𝑉 − 1))) ∩ (𝑈 “ (𝑉...𝑁))) = ∅) |
| 371 | | fnun 5997 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑈 “
(1...(𝑉 − 1)))
× {1}) Fn (𝑈 “
(1...(𝑉 − 1))) ∧
((𝑈 “ (𝑉...𝑁)) × {0}) Fn (𝑈 “ (𝑉...𝑁))) ∧ ((𝑈 “ (1...(𝑉 − 1))) ∩ (𝑈 “ (𝑉...𝑁))) = ∅) → (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ (𝑉...𝑁)))) |
| 372 | 363, 370,
371 | sylancr 695 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ (𝑉...𝑁)))) |
| 373 | | imaundi 5545 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑈 “ ((1...(𝑉 − 1)) ∪ (𝑉...𝑁))) = ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ (𝑉...𝑁))) |
| 374 | | uzss 11708 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑉 ∈
(ℤ≥‘(𝑉 − 1)) →
(ℤ≥‘𝑉) ⊆
(ℤ≥‘(𝑉 − 1))) |
| 375 | 319, 374 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 →
(ℤ≥‘𝑉) ⊆
(ℤ≥‘(𝑉 − 1))) |
| 376 | | elfzuz3 12339 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑉 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) ∈
(ℤ≥‘𝑉)) |
| 377 | 7, 376 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑁 − 1) ∈
(ℤ≥‘𝑉)) |
| 378 | 375, 377 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑁 − 1) ∈
(ℤ≥‘(𝑉 − 1))) |
| 379 | | peano2uz 11741 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑉 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑉 − 1))) |
| 380 | 378, 379 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑉 − 1))) |
| 381 | 13, 380 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑉 − 1))) |
| 382 | | fzsplit2 12366 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑉 − 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑉 − 1))) → (1...𝑁) = ((1...(𝑉 − 1)) ∪ (((𝑉 − 1) + 1)...𝑁))) |
| 383 | 314, 381,
382 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (1...𝑁) = ((1...(𝑉 − 1)) ∪ (((𝑉 − 1) + 1)...𝑁))) |
| 384 | 215 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (((𝑉 − 1) + 1)...𝑁) = (𝑉...𝑁)) |
| 385 | 384 | uneq2d 3767 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((1...(𝑉 − 1)) ∪ (((𝑉 − 1) + 1)...𝑁)) = ((1...(𝑉 − 1)) ∪ (𝑉...𝑁))) |
| 386 | 383, 385 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (1...𝑁) = ((1...(𝑉 − 1)) ∪ (𝑉...𝑁))) |
| 387 | 386 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...(𝑉 − 1)) ∪ (𝑉...𝑁)))) |
| 388 | 387, 107 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...(𝑉 − 1)) ∪ (𝑉...𝑁))) = (1...𝑁)) |
| 389 | 373, 388 | syl5eqr 2670 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ (𝑉...𝑁))) = (1...𝑁)) |
| 390 | 389 | fneq2d 5982 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ (𝑉...𝑁))) ↔ (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})) Fn (1...𝑁))) |
| 391 | 372, 390 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})) Fn (1...𝑁)) |
| 392 | 391 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})) Fn (1...𝑁)) |
| 393 | | fzfid 12772 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → (1...𝑁) ∈ Fin) |
| 394 | | eqidd 2623 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) ∧ 𝑛 ∈ (1...𝑁)) → (𝑇‘𝑛) = (𝑇‘𝑛)) |
| 395 | | fvun1 6269 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑈 “ (1...(𝑉 − 1))) × {1}) Fn (𝑈 “ (1...(𝑉 − 1))) ∧ ((𝑈 “ (𝑉...𝑁)) × {0}) Fn (𝑈 “ (𝑉...𝑁)) ∧ (((𝑈 “ (1...(𝑉 − 1))) ∩ (𝑈 “ (𝑉...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑉 − 1))) × {1})‘𝑛)) |
| 396 | 360, 362,
395 | mp3an12 1414 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑈 “ (1...(𝑉 − 1))) ∩ (𝑈 “ (𝑉...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑉 − 1))) × {1})‘𝑛)) |
| 397 | 370, 396 | sylan 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑉 − 1))) × {1})‘𝑛)) |
| 398 | 72 | fvconst2 6469 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) → (((𝑈 “ (1...(𝑉 − 1))) × {1})‘𝑛) = 1) |
| 399 | 398 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → (((𝑈 “ (1...(𝑉 − 1))) × {1})‘𝑛) = 1) |
| 400 | 397, 399 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = 1) |
| 401 | 400 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = 1) |
| 402 | 358, 392,
393, 393, 114, 394, 401 | ofval 6906 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 1)) |
| 403 | 111 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
| 404 | | fzss2 12381 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑉 ∈
(ℤ≥‘(𝑉 − 1)) → (1...(𝑉 − 1)) ⊆ (1...𝑉)) |
| 405 | 319, 404 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1...(𝑉 − 1)) ⊆ (1...𝑉)) |
| 406 | | imass2 5501 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1...(𝑉 − 1))
⊆ (1...𝑉) →
(𝑈 “ (1...(𝑉 − 1))) ⊆ (𝑈 “ (1...𝑉))) |
| 407 | 405, 406 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑈 “ (1...(𝑉 − 1))) ⊆ (𝑈 “ (1...𝑉))) |
| 408 | 407 | sselda 3603 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → 𝑛 ∈ (𝑈 “ (1...𝑉))) |
| 409 | 408, 121 | syldan 487 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = 1) |
| 410 | 409 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = 1) |
| 411 | 358, 403,
393, 393, 114, 394, 410 | ofval 6906 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 1)) |
| 412 | 402, 411 | eqtr4d 2659 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
| 413 | 357, 412 | mpdan 702 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
| 414 | | imassrn 5477 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 “ ((𝑉 + 1)...𝑁)) ⊆ ran 𝑈 |
| 415 | 414, 65 | syl5ss 3614 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 “ ((𝑉 + 1)...𝑁)) ⊆ (1...𝑁)) |
| 416 | 415 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → 𝑛 ∈ (1...𝑁)) |
| 417 | 70 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → 𝑇 Fn (1...𝑁)) |
| 418 | 391 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})) Fn (1...𝑁)) |
| 419 | | fzfid 12772 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → (1...𝑁) ∈ Fin) |
| 420 | | eqidd 2623 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → (𝑇‘𝑛) = (𝑇‘𝑛)) |
| 421 | | fzss1 12380 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑉 + 1) ∈
(ℤ≥‘𝑉) → ((𝑉 + 1)...𝑁) ⊆ (𝑉...𝑁)) |
| 422 | 148, 421 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑉 + 1)...𝑁) ⊆ (𝑉...𝑁)) |
| 423 | | imass2 5501 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑉 + 1)...𝑁) ⊆ (𝑉...𝑁) → (𝑈 “ ((𝑉 + 1)...𝑁)) ⊆ (𝑈 “ (𝑉...𝑁))) |
| 424 | 422, 423 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑈 “ ((𝑉 + 1)...𝑁)) ⊆ (𝑈 “ (𝑉...𝑁))) |
| 425 | 424 | sselda 3603 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → 𝑛 ∈ (𝑈 “ (𝑉...𝑁))) |
| 426 | | fvun2 6270 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑈 “ (1...(𝑉 − 1))) × {1}) Fn (𝑈 “ (1...(𝑉 − 1))) ∧ ((𝑈 “ (𝑉...𝑁)) × {0}) Fn (𝑈 “ (𝑉...𝑁)) ∧ (((𝑈 “ (1...(𝑉 − 1))) ∩ (𝑈 “ (𝑉...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (𝑉...𝑁)))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (𝑉...𝑁)) × {0})‘𝑛)) |
| 427 | 360, 362,
426 | mp3an12 1414 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑈 “ (1...(𝑉 − 1))) ∩ (𝑈 “ (𝑉...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (𝑉...𝑁))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (𝑉...𝑁)) × {0})‘𝑛)) |
| 428 | 370, 427 | sylan 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑉...𝑁))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (𝑉...𝑁)) × {0})‘𝑛)) |
| 429 | 75 | fvconst2 6469 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ (𝑈 “ (𝑉...𝑁)) → (((𝑈 “ (𝑉...𝑁)) × {0})‘𝑛) = 0) |
| 430 | 429 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑉...𝑁))) → (((𝑈 “ (𝑉...𝑁)) × {0})‘𝑛) = 0) |
| 431 | 428, 430 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑉...𝑁))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = 0) |
| 432 | 425, 431 | syldan 487 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = 0) |
| 433 | 432 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = 0) |
| 434 | 417, 418,
419, 419, 114, 420, 433 | ofval 6906 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 0)) |
| 435 | 111 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
| 436 | 186 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = 0) |
| 437 | 417, 435,
419, 419, 114, 420, 436 | ofval 6906 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 0)) |
| 438 | 434, 437 | eqtr4d 2659 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
| 439 | 416, 438 | mpdan 702 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
| 440 | 413, 439 | jaodan 826 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁)))) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
| 441 | 440 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁)))) → ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
| 442 | 203 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 443 | 207 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑦 = (𝑉 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) ∈ V) |
| 444 | 217 | adantlr 751 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑦 = (𝑉 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = if((𝑉 − 1) < 𝑀, (𝑉 − 1), 𝑉)) |
| 445 | | lttr 10114 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑉 − 1) ∈ ℝ ∧
𝑉 ∈ ℝ ∧
𝑀 ∈ ℝ) →
(((𝑉 − 1) < 𝑉 ∧ 𝑉 < 𝑀) → (𝑉 − 1) < 𝑀)) |
| 446 | 228, 28, 225, 445 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (((𝑉 − 1) < 𝑉 ∧ 𝑉 < 𝑀) → (𝑉 − 1) < 𝑀)) |
| 447 | 330, 446 | mpand 711 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑉 < 𝑀 → (𝑉 − 1) < 𝑀)) |
| 448 | 447 | imp 445 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → (𝑉 − 1) < 𝑀) |
| 449 | 448 | iftrued 4094 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → if((𝑉 − 1) < 𝑀, (𝑉 − 1), 𝑉) = (𝑉 − 1)) |
| 450 | 449 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑦 = (𝑉 − 1)) → if((𝑉 − 1) < 𝑀, (𝑉 − 1), 𝑉) = (𝑉 − 1)) |
| 451 | 444, 450 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑦 = (𝑉 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = (𝑉 − 1)) |
| 452 | | simpll 790 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑦 = (𝑉 − 1)) → 𝜑) |
| 453 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑉 − 1) → (1...𝑗) = (1...(𝑉 − 1))) |
| 454 | 453 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑉 − 1) → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...(𝑉 − 1)))) |
| 455 | 454 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑉 − 1) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑉 − 1))) × {1})) |
| 456 | 455 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 = (𝑉 − 1)) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑉 − 1))) × {1})) |
| 457 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = (𝑉 − 1) → (𝑗 + 1) = ((𝑉 − 1) + 1)) |
| 458 | 457, 215 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 = (𝑉 − 1)) → (𝑗 + 1) = 𝑉) |
| 459 | 458 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 = (𝑉 − 1)) → ((𝑗 + 1)...𝑁) = (𝑉...𝑁)) |
| 460 | 459 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 = (𝑉 − 1)) → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ (𝑉...𝑁))) |
| 461 | 460 | xpeq1d 5138 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 = (𝑉 − 1)) → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ (𝑉...𝑁)) × {0})) |
| 462 | 456, 461 | uneq12d 3768 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 = (𝑉 − 1)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))) |
| 463 | 462 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 = (𝑉 − 1)) → (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))) |
| 464 | 452, 463 | sylan 488 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑦 = (𝑉 − 1)) ∧ 𝑗 = (𝑉 − 1)) → (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))) |
| 465 | 443, 451,
464 | csbied2 3561 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑦 = (𝑉 − 1)) → ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))) |
| 466 | 250 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → (𝑉 − 1) ∈ (0...(𝑁 − 1))) |
| 467 | | ovexd 6680 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → (𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))) ∈ V) |
| 468 | 442, 465,
466, 467 | fvmptd 6288 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → (𝐹‘(𝑉 − 1)) = (𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))) |
| 469 | 468 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛)) |
| 470 | 469 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁)))) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛)) |
| 471 | 207 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑉 < 𝑀 ∧ 𝑦 = 𝑉) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) ∈ V) |
| 472 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑉 < 𝑀 → if(𝑉 < 𝑀, 𝑉, (𝑉 + 1)) = 𝑉) |
| 473 | 260, 472 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑉 < 𝑀 ∧ 𝑦 = 𝑉) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = 𝑉) |
| 474 | 473 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑉 < 𝑀 ∧ 𝑦 = 𝑉) → (𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) ↔ 𝑗 = 𝑉)) |
| 475 | 474 | biimpa 501 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑉 < 𝑀 ∧ 𝑦 = 𝑉) ∧ 𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1))) → 𝑗 = 𝑉) |
| 476 | 475, 245 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑉 < 𝑀 ∧ 𝑦 = 𝑉) ∧ 𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1))) → (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))) |
| 477 | 471, 476 | csbied 3560 |
. . . . . . . . . . . . . . 15
⊢ ((𝑉 < 𝑀 ∧ 𝑦 = 𝑉) → ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))) |
| 478 | 477 | adantll 750 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑦 = 𝑉) → ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))) |
| 479 | 282 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → 𝑉 ∈ (0...(𝑁 − 1))) |
| 480 | | ovexd 6680 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))) ∈ V) |
| 481 | 442, 478,
479, 480 | fvmptd 6288 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → (𝐹‘𝑉) = (𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))) |
| 482 | 481 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → ((𝐹‘𝑉)‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
| 483 | 482 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁)))) → ((𝐹‘𝑉)‘𝑛) = ((𝑇 ∘𝑓 + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
| 484 | 441, 470,
483 | 3eqtr4d 2666 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁)))) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝐹‘𝑉)‘𝑛)) |
| 485 | 484 | ex 450 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → ((𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝐹‘𝑉)‘𝑛))) |
| 486 | 354, 485 | sylbid 230 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → ((𝑛 ∈ (𝑈 “ (1...𝑁)) ∧ ¬ 𝑛 ∈ (𝑈 “ {𝑉})) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝐹‘𝑉)‘𝑛))) |
| 487 | 486 | expdimp 453 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑛 ∈ (𝑈 “ (1...𝑁))) → (¬ 𝑛 ∈ (𝑈 “ {𝑉}) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝐹‘𝑉)‘𝑛))) |
| 488 | 487 | necon1ad 2811 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑛 ∈ (𝑈 “ (1...𝑁))) → (((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 ∈ (𝑈 “ {𝑉}))) |
| 489 | | elimasni 5492 |
. . . . . . . 8
⊢ (𝑛 ∈ (𝑈 “ {𝑉}) → 𝑉𝑈𝑛) |
| 490 | | eqcom 2629 |
. . . . . . . . 9
⊢ (𝑛 = (𝑈‘𝑉) ↔ (𝑈‘𝑉) = 𝑛) |
| 491 | | fnbrfvb 6236 |
. . . . . . . . . 10
⊢ ((𝑈 Fn (1...𝑁) ∧ 𝑉 ∈ (1...𝑁)) → ((𝑈‘𝑉) = 𝑛 ↔ 𝑉𝑈𝑛)) |
| 492 | 296, 100,
491 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑈‘𝑉) = 𝑛 ↔ 𝑉𝑈𝑛)) |
| 493 | 490, 492 | syl5bb 272 |
. . . . . . . 8
⊢ (𝜑 → (𝑛 = (𝑈‘𝑉) ↔ 𝑉𝑈𝑛)) |
| 494 | 489, 493 | syl5ibr 236 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ (𝑈 “ {𝑉}) → 𝑛 = (𝑈‘𝑉))) |
| 495 | 494 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑛 ∈ (𝑈 “ (1...𝑁))) → (𝑛 ∈ (𝑈 “ {𝑉}) → 𝑛 = (𝑈‘𝑉))) |
| 496 | 488, 495 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑛 ∈ (𝑈 “ (1...𝑁))) → (((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘𝑉))) |
| 497 | 496 | ralrimiva 2966 |
. . . 4
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → ∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘𝑉))) |
| 498 | | fvex 6201 |
. . . . 5
⊢ (𝑈‘𝑉) ∈ V |
| 499 | | eqeq2 2633 |
. . . . . . 7
⊢ (𝑚 = (𝑈‘𝑉) → (𝑛 = 𝑚 ↔ 𝑛 = (𝑈‘𝑉))) |
| 500 | 499 | imbi2d 330 |
. . . . . 6
⊢ (𝑚 = (𝑈‘𝑉) → ((((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚) ↔ (((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘𝑉)))) |
| 501 | 500 | ralbidv 2986 |
. . . . 5
⊢ (𝑚 = (𝑈‘𝑉) → (∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚) ↔ ∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘𝑉)))) |
| 502 | 498, 501 | spcev 3300 |
. . . 4
⊢
(∀𝑛 ∈
(𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘𝑉)) → ∃𝑚∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚)) |
| 503 | 497, 502 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → ∃𝑚∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚)) |
| 504 | | eldifsni 4320 |
. . . . 5
⊢ (𝑀 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑀 ≠ 𝑉) |
| 505 | 219, 504 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑀 ≠ 𝑉) |
| 506 | 225, 28 | lttri2d 10176 |
. . . 4
⊢ (𝜑 → (𝑀 ≠ 𝑉 ↔ (𝑀 < 𝑉 ∨ 𝑉 < 𝑀))) |
| 507 | 505, 506 | mpbid 222 |
. . 3
⊢ (𝜑 → (𝑀 < 𝑉 ∨ 𝑉 < 𝑀)) |
| 508 | 309, 503,
507 | mpjaodan 827 |
. 2
⊢ (𝜑 → ∃𝑚∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚)) |
| 509 | | nfv 1843 |
. . . 4
⊢
Ⅎ𝑚((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) |
| 510 | 509 | rmo2 3526 |
. . 3
⊢
(∃*𝑛 ∈
(𝑈 “ (1...𝑁))((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) ↔ ∃𝑚∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚)) |
| 511 | | rmoeq1 3141 |
. . . 4
⊢ ((𝑈 “ (1...𝑁)) = (1...𝑁) → (∃*𝑛 ∈ (𝑈 “ (1...𝑁))((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) ↔ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛))) |
| 512 | 107, 511 | syl 17 |
. . 3
⊢ (𝜑 → (∃*𝑛 ∈ (𝑈 “ (1...𝑁))((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) ↔ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛))) |
| 513 | 510, 512 | syl5bbr 274 |
. 2
⊢ (𝜑 → (∃𝑚∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚) ↔ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛))) |
| 514 | 508, 513 | mpbid 222 |
1
⊢ (𝜑 → ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛)) |