| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimf | Structured version Visualization version GIF version | ||
| Description: Eliminate a mapping hypothesis for the weak deduction theorem dedth 4139, when a special case 𝐺:𝐴⟶𝐵 is provable, in order to convert 𝐹:𝐴⟶𝐵 from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006.) |
| Ref | Expression |
|---|---|
| elimf.1 | ⊢ 𝐺:𝐴⟶𝐵 |
| Ref | Expression |
|---|---|
| elimf | ⊢ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1 6026 | . 2 ⊢ (𝐹 = if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺) → (𝐹:𝐴⟶𝐵 ↔ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵)) | |
| 2 | feq1 6026 | . 2 ⊢ (𝐺 = if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺) → (𝐺:𝐴⟶𝐵 ↔ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵)) | |
| 3 | elimf.1 | . 2 ⊢ 𝐺:𝐴⟶𝐵 | |
| 4 | 1, 2, 3 | elimhyp 4146 | 1 ⊢ if(𝐹:𝐴⟶𝐵, 𝐹, 𝐺):𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ifcif 4086 ⟶wf 5884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-fun 5890 df-fn 5891 df-f 5892 |
| This theorem is referenced by: hosubcl 28632 hoaddcom 28633 hoaddass 28641 hocsubdir 28644 hoaddid1 28650 hodid 28651 ho0sub 28656 honegsub 28658 hoddi 28849 |
| Copyright terms: Public domain | W3C validator |