Proof of Theorem eliunov2
| Step | Hyp | Ref
| Expression |
| 1 | | elex 3212 |
. . . . 5
⊢ (𝑅 ∈ 𝑈 → 𝑅 ∈ V) |
| 2 | 1 | adantr 481 |
. . . 4
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → 𝑅 ∈ V) |
| 3 | | simpr 477 |
. . . . 5
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ 𝑉) |
| 4 | | ovex 6678 |
. . . . . 6
⊢ (𝑅 ↑ 𝑛) ∈ V |
| 5 | 4 | rgenw 2924 |
. . . . 5
⊢
∀𝑛 ∈
𝑁 (𝑅 ↑ 𝑛) ∈ V |
| 6 | | iunexg 7143 |
. . . . 5
⊢ ((𝑁 ∈ 𝑉 ∧ ∀𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ∈ V) → ∪ 𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ∈ V) |
| 7 | 3, 5, 6 | sylancl 694 |
. . . 4
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ∈ V) |
| 8 | | oveq1 6657 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (𝑟 ↑ 𝑛) = (𝑅 ↑ 𝑛)) |
| 9 | 8 | iuneq2d 4547 |
. . . . 5
⊢ (𝑟 = 𝑅 → ∪
𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛) = ∪ 𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛)) |
| 10 | | eqid 2622 |
. . . . 5
⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) |
| 11 | 9, 10 | fvmptg 6280 |
. . . 4
⊢ ((𝑅 ∈ V ∧ ∪ 𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ∈ V) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) = ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛)) |
| 12 | 2, 7, 11 | syl2anc 693 |
. . 3
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) = ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛)) |
| 13 | | eleq2 2690 |
. . . 4
⊢ (((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) = ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) → (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ 𝑋 ∈ ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛))) |
| 14 | | eliun 4524 |
. . . . 5
⊢ (𝑋 ∈ ∪ 𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛)) |
| 15 | 14 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) |
| 16 | 13, 15 | sylan9bb 736 |
. . 3
⊢ ((((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) = ∪
𝑛 ∈ 𝑁 (𝑅 ↑ 𝑛) ∧ (𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉)) → (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) |
| 17 | 12, 16 | mpancom 703 |
. 2
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) |
| 18 | | mptiunov2.def |
. . 3
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) |
| 19 | | fveq1 6190 |
. . . . . 6
⊢ (𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) → (𝐶‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅)) |
| 20 | 19 | eleq2d 2687 |
. . . . 5
⊢ (𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) → (𝑋 ∈ (𝐶‘𝑅) ↔ 𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅))) |
| 21 | 20 | bibi1d 333 |
. . . 4
⊢ (𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) → ((𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛)) ↔ (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛)))) |
| 22 | 21 | imbi2d 330 |
. . 3
⊢ (𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) → (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) ↔ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))))) |
| 23 | 18, 22 | ax-mp 5 |
. 2
⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) ↔ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛))‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛)))) |
| 24 | 17, 23 | mpbir 221 |
1
⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) |