Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elixpconstg Structured version   Visualization version   GIF version

Theorem elixpconstg 39266
Description: Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Assertion
Ref Expression
elixpconstg (𝐹𝑉 → (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elixpconstg
StepHypRef Expression
1 elixp2 7912 . . . . . 6 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
21simp2bi 1077 . . . . 5 (𝐹X𝑥𝐴 𝐵𝐹 Fn 𝐴)
31simp3bi 1078 . . . . 5 (𝐹X𝑥𝐴 𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
42, 3jca 554 . . . 4 (𝐹X𝑥𝐴 𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
5 ffnfv 6388 . . . 4 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
64, 5sylibr 224 . . 3 (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵)
76a1i 11 . 2 (𝐹𝑉 → (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵))
8 elex 3212 . . . . . 6 (𝐹𝑉𝐹 ∈ V)
98adantr 481 . . . . 5 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐹 ∈ V)
10 ffn 6045 . . . . . 6 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
1110adantl 482 . . . . 5 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐹 Fn 𝐴)
125simprbi 480 . . . . . 6 (𝐹:𝐴𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
1312adantl 482 . . . . 5 ((𝐹𝑉𝐹:𝐴𝐵) → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
149, 11, 133jca 1242 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
1514, 1sylibr 224 . . 3 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐹X𝑥𝐴 𝐵)
1615ex 450 . 2 (𝐹𝑉 → (𝐹:𝐴𝐵𝐹X𝑥𝐴 𝐵))
177, 16impbid 202 1 (𝐹𝑉 → (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  wral 2912  Vcvv 3200   Fn wfn 5883  wf 5884  cfv 5888  Xcixp 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ixp 7909
This theorem is referenced by:  iinhoiicclem  40887
  Copyright terms: Public domain W3C validator