Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwdifcl Structured version   Visualization version   GIF version

Theorem elpwdifcl 29358
Description: Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.)
Hypothesis
Ref Expression
elpwincl.1 (𝜑𝐴 ∈ 𝒫 𝐶)
Assertion
Ref Expression
elpwdifcl (𝜑 → (𝐴𝐵) ∈ 𝒫 𝐶)

Proof of Theorem elpwdifcl
StepHypRef Expression
1 elpwincl.1 . . . 4 (𝜑𝐴 ∈ 𝒫 𝐶)
21elpwid 4170 . . 3 (𝜑𝐴𝐶)
32ssdifssd 3748 . 2 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
4 difexg 4808 . . 3 (𝐴 ∈ 𝒫 𝐶 → (𝐴𝐵) ∈ V)
5 elpwg 4166 . . 3 ((𝐴𝐵) ∈ V → ((𝐴𝐵) ∈ 𝒫 𝐶 ↔ (𝐴𝐵) ⊆ 𝐶))
61, 4, 53syl 18 . 2 (𝜑 → ((𝐴𝐵) ∈ 𝒫 𝐶 ↔ (𝐴𝐵) ⊆ 𝐶))
73, 6mpbird 247 1 (𝜑 → (𝐴𝐵) ∈ 𝒫 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 1990  Vcvv 3200  cdif 3571  wss 3574  𝒫 cpw 4158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-pw 4160
This theorem is referenced by:  pwldsys  30220  ldgenpisyslem1  30226  difelcarsg  30372  inelcarsg  30373  carsgclctunlem2  30381  carsgclctunlem3  30382  carsgclctun  30383
  Copyright terms: Public domain W3C validator