Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctunlem3 Structured version   Visualization version   GIF version

Theorem carsgclctunlem3 30382
Description: Lemma for carsgclctun 30383. (Contributed by Thierry Arnoux, 24-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
carsgclctun.1 (𝜑𝐴 ≼ ω)
carsgclctun.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
carsgclctunlem3.1 (𝜑𝐸 ∈ 𝒫 𝑂)
Assertion
Ref Expression
carsgclctunlem3 (𝜑 → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgclctunlem3
Dummy variables 𝑒 𝑓 𝑘 𝑛 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 12256 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 carsgval.2 . . . . . . . 8 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
3 carsgclctunlem3.1 . . . . . . . . 9 (𝜑𝐸 ∈ 𝒫 𝑂)
43elpwincl1 29357 . . . . . . . 8 (𝜑 → (𝐸 𝐴) ∈ 𝒫 𝑂)
52, 4ffvelrnd 6360 . . . . . . 7 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ (0[,]+∞))
61, 5sseldi 3601 . . . . . 6 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ ℝ*)
73elpwdifcl 29358 . . . . . . . 8 (𝜑 → (𝐸 𝐴) ∈ 𝒫 𝑂)
82, 7ffvelrnd 6360 . . . . . . 7 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ (0[,]+∞))
91, 8sseldi 3601 . . . . . 6 (𝜑 → (𝑀‘(𝐸 𝐴)) ∈ ℝ*)
106, 9xaddcld 12131 . . . . 5 (𝜑 → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ*)
1110adantr 481 . . . 4 ((𝜑 ∧ (𝑀𝐸) = +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ*)
12 pnfge 11964 . . . 4 (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ* → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ +∞)
1311, 12syl 17 . . 3 ((𝜑 ∧ (𝑀𝐸) = +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ +∞)
14 simpr 477 . . 3 ((𝜑 ∧ (𝑀𝐸) = +∞) → (𝑀𝐸) = +∞)
1513, 14breqtrrd 4681 . 2 ((𝜑 ∧ (𝑀𝐸) = +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
16 unieq 4444 . . . . . . . . . . . . 13 (𝐴 = ∅ → 𝐴 = ∅)
17 uni0 4465 . . . . . . . . . . . . 13 ∅ = ∅
1816, 17syl6eq 2672 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
1918ineq2d 3814 . . . . . . . . . . 11 (𝐴 = ∅ → (𝐸 𝐴) = (𝐸 ∩ ∅))
20 in0 3968 . . . . . . . . . . 11 (𝐸 ∩ ∅) = ∅
2119, 20syl6eq 2672 . . . . . . . . . 10 (𝐴 = ∅ → (𝐸 𝐴) = ∅)
2221fveq2d 6195 . . . . . . . . 9 (𝐴 = ∅ → (𝑀‘(𝐸 𝐴)) = (𝑀‘∅))
2318difeq2d 3728 . . . . . . . . . . 11 (𝐴 = ∅ → (𝐸 𝐴) = (𝐸 ∖ ∅))
24 dif0 3950 . . . . . . . . . . 11 (𝐸 ∖ ∅) = 𝐸
2523, 24syl6eq 2672 . . . . . . . . . 10 (𝐴 = ∅ → (𝐸 𝐴) = 𝐸)
2625fveq2d 6195 . . . . . . . . 9 (𝐴 = ∅ → (𝑀‘(𝐸 𝐴)) = (𝑀𝐸))
2722, 26oveq12d 6668 . . . . . . . 8 (𝐴 = ∅ → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = ((𝑀‘∅) +𝑒 (𝑀𝐸)))
2827adantl 482 . . . . . . 7 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = ((𝑀‘∅) +𝑒 (𝑀𝐸)))
29 carsgsiga.1 . . . . . . . . 9 (𝜑 → (𝑀‘∅) = 0)
3029adantr 481 . . . . . . . 8 ((𝜑𝐴 = ∅) → (𝑀‘∅) = 0)
3130oveq1d 6665 . . . . . . 7 ((𝜑𝐴 = ∅) → ((𝑀‘∅) +𝑒 (𝑀𝐸)) = (0 +𝑒 (𝑀𝐸)))
322, 3ffvelrnd 6360 . . . . . . . . . 10 (𝜑 → (𝑀𝐸) ∈ (0[,]+∞))
331, 32sseldi 3601 . . . . . . . . 9 (𝜑 → (𝑀𝐸) ∈ ℝ*)
3433adantr 481 . . . . . . . 8 ((𝜑𝐴 = ∅) → (𝑀𝐸) ∈ ℝ*)
35 xaddid2 12073 . . . . . . . 8 ((𝑀𝐸) ∈ ℝ* → (0 +𝑒 (𝑀𝐸)) = (𝑀𝐸))
3634, 35syl 17 . . . . . . 7 ((𝜑𝐴 = ∅) → (0 +𝑒 (𝑀𝐸)) = (𝑀𝐸))
3728, 31, 363eqtrd 2660 . . . . . 6 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = (𝑀𝐸))
3837, 34eqeltrd 2701 . . . . . . 7 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ*)
39 xeqlelt 29538 . . . . . . 7 ((((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ∈ ℝ* ∧ (𝑀𝐸) ∈ ℝ*) → (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = (𝑀𝐸) ↔ (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸) ∧ ¬ ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) < (𝑀𝐸))))
4038, 34, 39syl2anc 693 . . . . . 6 ((𝜑𝐴 = ∅) → (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) = (𝑀𝐸) ↔ (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸) ∧ ¬ ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) < (𝑀𝐸))))
4137, 40mpbid 222 . . . . 5 ((𝜑𝐴 = ∅) → (((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸) ∧ ¬ ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) < (𝑀𝐸)))
4241simpld 475 . . . 4 ((𝜑𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
4342adantlr 751 . . 3 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 = ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
44 carsgclctun.2 . . . . . . . 8 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
45 fvex 6201 . . . . . . . . 9 (toCaraSiga‘𝑀) ∈ V
4645ssex 4802 . . . . . . . 8 (𝐴 ⊆ (toCaraSiga‘𝑀) → 𝐴 ∈ V)
47 0sdomg 8089 . . . . . . . 8 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
4844, 46, 473syl 18 . . . . . . 7 (𝜑 → (∅ ≺ 𝐴𝐴 ≠ ∅))
4948biimpar 502 . . . . . 6 ((𝜑𝐴 ≠ ∅) → ∅ ≺ 𝐴)
5049adantlr 751 . . . . 5 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴)
51 carsgclctun.1 . . . . . . 7 (𝜑𝐴 ≼ ω)
52 nnenom 12779 . . . . . . . 8 ℕ ≈ ω
5352ensymi 8006 . . . . . . 7 ω ≈ ℕ
54 domentr 8015 . . . . . . 7 ((𝐴 ≼ ω ∧ ω ≈ ℕ) → 𝐴 ≼ ℕ)
5551, 53, 54sylancl 694 . . . . . 6 (𝜑𝐴 ≼ ℕ)
5655ad2antrr 762 . . . . 5 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → 𝐴 ≼ ℕ)
57 fodomr 8111 . . . . 5 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝐴)
5850, 56, 57syl2anc 693 . . . 4 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto𝐴)
59 fveq2 6191 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
6059iundisj 23316 . . . . . . . . 9 𝑛 ∈ ℕ (𝑓𝑛) = 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))
61 fofn 6117 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴𝑓 Fn ℕ)
62 fniunfv 6505 . . . . . . . . . . . 12 (𝑓 Fn ℕ → 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
6361, 62syl 17 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
64 forn 6118 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝐴 → ran 𝑓 = 𝐴)
6564unieqd 4446 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 ran 𝑓 = 𝐴)
6663, 65eqtrd 2656 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴 𝑛 ∈ ℕ (𝑓𝑛) = 𝐴)
6766adantl 482 . . . . . . . . 9 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑛 ∈ ℕ (𝑓𝑛) = 𝐴)
6860, 67syl5eqr 2670 . . . . . . . 8 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)) = 𝐴)
6968ineq2d 3814 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))) = (𝐸 𝐴))
7069fveq2d 6195 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) = (𝑀‘(𝐸 𝐴)))
7168difeq2d 3728 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))) = (𝐸 𝐴))
7271fveq2d 6195 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) = (𝑀‘(𝐸 𝐴)))
7370, 72oveq12d 6668 . . . . 5 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → ((𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) +𝑒 (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))))) = ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))))
74 carsgval.1 . . . . . . 7 (𝜑𝑂𝑉)
7574ad3antrrr 766 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑂𝑉)
762ad3antrrr 766 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
7729ad3antrrr 766 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀‘∅) = 0)
78 carsgsiga.2 . . . . . . . . 9 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
79783adant1r 1319 . . . . . . . 8 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
80793adant1r 1319 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
81803adant1r 1319 . . . . . 6 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
82 carsgsiga.3 . . . . . . . . 9 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
83823adant1r 1319 . . . . . . . 8 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
84833adant1r 1319 . . . . . . 7 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
85843adant1r 1319 . . . . . 6 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
8659iundisj2 23317 . . . . . . 7 Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))
8786a1i 11 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))
8875adantr 481 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑂𝑉)
8976adantr 481 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
9044ad4antr 768 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ (toCaraSiga‘𝑀))
91 fof 6115 . . . . . . . . . 10 (𝑓:ℕ–onto𝐴𝑓:ℕ⟶𝐴)
9291ad2antlr 763 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑓:ℕ⟶𝐴)
93 simpr 477 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9492, 93ffvelrnd 6360 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ 𝐴)
9590, 94sseldd 3604 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (toCaraSiga‘𝑀))
9677adantr 481 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (𝑀‘∅) = 0)
97813adant1r 1319 . . . . . . . 8 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
9888, 89, 96, 97carsgsigalem 30377 . . . . . . 7 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑒 ∈ 𝒫 𝑂𝑔 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑔)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑔)))
9991ad3antlr 767 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑓:ℕ⟶𝐴)
100 fzossnn 12516 . . . . . . . . . . . . 13 (1..^𝑛) ⊆ ℕ
101100a1i 11 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → (1..^𝑛) ⊆ ℕ)
102101sselda 3603 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ ℕ)
10399, 102ffvelrnd 6360 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → (𝑓𝑘) ∈ 𝐴)
104103ralrimiva 2966 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ 𝐴)
105 dfiun2g 4552 . . . . . . . . 9 (∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ 𝐴 𝑘 ∈ (1..^𝑛)(𝑓𝑘) = {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)})
106104, 105syl 17 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑘 ∈ (1..^𝑛)(𝑓𝑘) = {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)})
107 eqid 2622 . . . . . . . . . . . 12 (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) = (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘))
108107rnmpt 5371 . . . . . . . . . . 11 ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) = {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)}
109 fzofi 12773 . . . . . . . . . . . 12 (1..^𝑛) ∈ Fin
110 mptfi 8265 . . . . . . . . . . . 12 ((1..^𝑛) ∈ Fin → (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin)
111 rnfi 8249 . . . . . . . . . . . 12 ((𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin → ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin)
112109, 110, 111mp2b 10 . . . . . . . . . . 11 ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ∈ Fin
113108, 112eqeltrri 2698 . . . . . . . . . 10 {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ∈ Fin
114113a1i 11 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ∈ Fin)
11590adantr 481 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → 𝐴 ⊆ (toCaraSiga‘𝑀))
116115, 103sseldd 3604 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑛)) → (𝑓𝑘) ∈ (toCaraSiga‘𝑀))
117116ralrimiva 2966 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ (toCaraSiga‘𝑀))
118107rnmptss 6392 . . . . . . . . . . 11 (∀𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ (toCaraSiga‘𝑀) → ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ⊆ (toCaraSiga‘𝑀))
119117, 118syl 17 . . . . . . . . . 10 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ran (𝑘 ∈ (1..^𝑛) ↦ (𝑓𝑘)) ⊆ (toCaraSiga‘𝑀))
120108, 119syl5eqssr 3650 . . . . . . . . 9 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ⊆ (toCaraSiga‘𝑀))
12188, 89, 96, 97, 114, 120fiunelcarsg 30378 . . . . . . . 8 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → {𝑧 ∣ ∃𝑘 ∈ (1..^𝑛)𝑧 = (𝑓𝑘)} ∈ (toCaraSiga‘𝑀))
122106, 121eqeltrd 2701 . . . . . . 7 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → 𝑘 ∈ (1..^𝑛)(𝑓𝑘) ∈ (toCaraSiga‘𝑀))
12388, 89, 95, 98, 122difelcarsg2 30375 . . . . . 6 (((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)) ∈ (toCaraSiga‘𝑀))
1243ad3antrrr 766 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → 𝐸 ∈ 𝒫 𝑂)
125 simpllr 799 . . . . . 6 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → (𝑀𝐸) ≠ +∞)
12675, 76, 77, 81, 85, 87, 123, 124, 125carsgclctunlem2 30381 . . . . 5 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → ((𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘)))) +𝑒 (𝑀‘(𝐸 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑘 ∈ (1..^𝑛)(𝑓𝑘))))) ≤ (𝑀𝐸))
12773, 126eqbrtrrd 4677 . . . 4 ((((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–onto𝐴) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
12858, 127exlimddv 1863 . . 3 (((𝜑 ∧ (𝑀𝐸) ≠ +∞) ∧ 𝐴 ≠ ∅) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
12943, 128pm2.61dane 2881 . 2 ((𝜑 ∧ (𝑀𝐸) ≠ +∞) → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
13015, 129pm2.61dane 2881 1 (𝜑 → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158   cuni 4436   ciun 4520  Disj wdisj 4620   class class class wbr 4653  cmpt 4729  ran crn 5115   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  ωcom 7065  cen 7952  cdom 7953  csdm 7954  Fincfn 7955  0cc0 9936  1c1 9937  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  cn 11020   +𝑒 cxad 11944  [,]cicc 12178  ..^cfzo 12465  Σ*cesum 30089  toCaraSigaccarsg 30363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-ordt 16161  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-abv 18817  df-lmod 18865  df-scaf 18866  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tmd 21876  df-tgp 21877  df-tsms 21930  df-trg 21963  df-xms 22125  df-ms 22126  df-tms 22127  df-nm 22387  df-ngp 22388  df-nrg 22390  df-nlm 22391  df-ii 22680  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-esum 30090  df-carsg 30364
This theorem is referenced by:  carsgclctun  30383
  Copyright terms: Public domain W3C validator