Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldgenpisyslem1 Structured version   Visualization version   GIF version

Theorem ldgenpisyslem1 30226
Description: Lemma for ldgenpisys 30229. (Contributed by Thierry Arnoux, 29-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
dynkin.o (𝜑𝑂𝑉)
ldgenpisys.e 𝐸 = {𝑡𝐿𝑇𝑡}
ldgenpisys.1 (𝜑𝑇𝑃)
ldgenpisyslem1.1 (𝜑𝐴𝐸)
Assertion
Ref Expression
ldgenpisyslem1 (𝜑 → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝐿)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝐿   𝑂,𝑠,𝑡,𝑥   𝑡,𝑃,𝑥,𝑦   𝐿,𝑠   𝑇,𝑠,𝑡,𝑥   𝜑,𝑡,𝑥   𝑠,𝑏,𝑥,𝐴,𝑡,𝑦   𝐸,𝑏,𝑠,𝑡,𝑥,𝑦   𝑂,𝑏,𝑦   𝑥,𝑉   𝑦,𝑇   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑠,𝑏)   𝑃(𝑠,𝑏)   𝑇(𝑏)   𝐿(𝑏)   𝑉(𝑦,𝑡,𝑠,𝑏)

Proof of Theorem ldgenpisyslem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . 3 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂
2 dynkin.o . . . 4 (𝜑𝑂𝑉)
3 pwexg 4850 . . . 4 (𝑂𝑉 → 𝒫 𝑂 ∈ V)
4 rabexg 4812 . . . 4 (𝒫 𝑂 ∈ V → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ V)
5 elpwg 4166 . . . 4 ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ V → ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂 ↔ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂))
62, 3, 4, 54syl 19 . . 3 (𝜑 → ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂 ↔ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂))
71, 6mpbiri 248 . 2 (𝜑 → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂)
8 0elpw 4834 . . . . 5 ∅ ∈ 𝒫 𝑂
98a1i 11 . . . 4 (𝜑 → ∅ ∈ 𝒫 𝑂)
10 dynkin.l . . . . . . . . . . . 12 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
1110isldsys 30219 . . . . . . . . . . 11 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1211simprbi 480 . . . . . . . . . 10 (𝑡𝐿 → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
1312simp1d 1073 . . . . . . . . 9 (𝑡𝐿 → ∅ ∈ 𝑡)
1413ad2antlr 763 . . . . . . . 8 (((𝜑𝑡𝐿) ∧ 𝑇𝑡) → ∅ ∈ 𝑡)
1514ex 450 . . . . . . 7 ((𝜑𝑡𝐿) → (𝑇𝑡 → ∅ ∈ 𝑡))
1615ralrimiva 2966 . . . . . 6 (𝜑 → ∀𝑡𝐿 (𝑇𝑡 → ∅ ∈ 𝑡))
17 0ex 4790 . . . . . . 7 ∅ ∈ V
1817elintrab 4488 . . . . . 6 (∅ ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → ∅ ∈ 𝑡))
1916, 18sylibr 224 . . . . 5 (𝜑 → ∅ ∈ {𝑡𝐿𝑇𝑡})
20 in0 3968 . . . . 5 (𝐴 ∩ ∅) = ∅
21 ldgenpisys.e . . . . 5 𝐸 = {𝑡𝐿𝑇𝑡}
2219, 20, 213eltr4g 2718 . . . 4 (𝜑 → (𝐴 ∩ ∅) ∈ 𝐸)
23 ineq2 3808 . . . . . 6 (𝑏 = ∅ → (𝐴𝑏) = (𝐴 ∩ ∅))
2423eleq1d 2686 . . . . 5 (𝑏 = ∅ → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴 ∩ ∅) ∈ 𝐸))
2524elrab 3363 . . . 4 (∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ (∅ ∈ 𝒫 𝑂 ∧ (𝐴 ∩ ∅) ∈ 𝐸))
269, 22, 25sylanbrc 698 . . 3 (𝜑 → ∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
27 ineq2 3808 . . . . . . . 8 (𝑏 = 𝑥 → (𝐴𝑏) = (𝐴𝑥))
2827eleq1d 2686 . . . . . . 7 (𝑏 = 𝑥 → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴𝑥) ∈ 𝐸))
2928elrab 3363 . . . . . 6 (𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸))
30 pwidg 4173 . . . . . . . . . 10 (𝑂𝑉𝑂 ∈ 𝒫 𝑂)
312, 30syl 17 . . . . . . . . 9 (𝜑𝑂 ∈ 𝒫 𝑂)
3231adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → 𝑂 ∈ 𝒫 𝑂)
3332elpwdifcl 29358 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → (𝑂𝑥) ∈ 𝒫 𝑂)
3410pwldsys 30220 . . . . . . . . . . . . . . . . . . 19 (𝑂𝑉 → 𝒫 𝑂𝐿)
352, 34syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → 𝒫 𝑂𝐿)
36 ldgenpisys.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇𝑃)
37 dynkin.p . . . . . . . . . . . . . . . . . . . . . 22 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
3837ispisys 30215 . . . . . . . . . . . . . . . . . . . . 21 (𝑇𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇))
3936, 38sylib 208 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇))
4039simpld 475 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ 𝒫 𝒫 𝑂)
4140elpwid 4170 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ⊆ 𝒫 𝑂)
42 sseq2 3627 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝒫 𝑂 → (𝑇𝑡𝑇 ⊆ 𝒫 𝑂))
4342intminss 4503 . . . . . . . . . . . . . . . . . 18 ((𝒫 𝑂𝐿𝑇 ⊆ 𝒫 𝑂) → {𝑡𝐿𝑇𝑡} ⊆ 𝒫 𝑂)
4435, 41, 43syl2anc 693 . . . . . . . . . . . . . . . . 17 (𝜑 {𝑡𝐿𝑇𝑡} ⊆ 𝒫 𝑂)
4521, 44syl5eqss 3649 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ⊆ 𝒫 𝑂)
46 ldgenpisyslem1.1 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝐸)
4745, 46sseldd 3604 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ 𝒫 𝑂)
4847elpwid 4170 . . . . . . . . . . . . . 14 (𝜑𝐴𝑂)
4948ad3antrrr 766 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝐴𝑂)
50 difin 3861 . . . . . . . . . . . . . . . 16 (𝐴 ∖ (𝐴𝑥)) = (𝐴𝑥)
51 difin2 3890 . . . . . . . . . . . . . . . 16 (𝐴𝑂 → (𝐴𝑥) = ((𝑂𝑥) ∩ 𝐴))
5250, 51syl5eq 2668 . . . . . . . . . . . . . . 15 (𝐴𝑂 → (𝐴 ∖ (𝐴𝑥)) = ((𝑂𝑥) ∩ 𝐴))
53 incom 3805 . . . . . . . . . . . . . . 15 ((𝑂𝑥) ∩ 𝐴) = (𝐴 ∩ (𝑂𝑥))
5452, 53syl6eq 2672 . . . . . . . . . . . . . 14 (𝐴𝑂 → (𝐴 ∖ (𝐴𝑥)) = (𝐴 ∩ (𝑂𝑥)))
55 difuncomp 29369 . . . . . . . . . . . . . 14 (𝐴𝑂 → (𝐴 ∖ (𝐴𝑥)) = (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))))
5654, 55eqtr3d 2658 . . . . . . . . . . . . 13 (𝐴𝑂 → (𝐴 ∩ (𝑂𝑥)) = (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))))
5749, 56syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴 ∩ (𝑂𝑥)) = (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))))
58 difeq2 3722 . . . . . . . . . . . . . 14 (𝑦 = ((𝑂𝐴) ∪ (𝐴𝑥)) → (𝑂𝑦) = (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))))
5958eleq1d 2686 . . . . . . . . . . . . 13 (𝑦 = ((𝑂𝐴) ∪ (𝐴𝑥)) → ((𝑂𝑦) ∈ 𝑡 ↔ (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))) ∈ 𝑡))
6012simp2d 1074 . . . . . . . . . . . . . . 15 (𝑡𝐿 → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
6160ad2antlr 763 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
62 difeq2 3722 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑂𝑥) = (𝑂𝑦))
6362eleq1d 2686 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂𝑦) ∈ 𝑡))
6463cbvralv 3171 . . . . . . . . . . . . . 14 (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ↔ ∀𝑦𝑡 (𝑂𝑦) ∈ 𝑡)
6561, 64sylib 208 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ∀𝑦𝑡 (𝑂𝑦) ∈ 𝑡)
66 simplr 792 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑡𝐿)
6746, 21syl6eleq 2711 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 {𝑡𝐿𝑇𝑡})
68 elintrabg 4489 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐸 → (𝐴 {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡𝐴𝑡)))
6946, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡𝐴𝑡)))
7067, 69mpbid 222 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑡𝐿 (𝑇𝑡𝐴𝑡))
7170r19.21bi 2932 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝐿) → (𝑇𝑡𝐴𝑡))
7271imp 445 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝐿) ∧ 𝑇𝑡) → 𝐴𝑡)
7372adantllr 755 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝐴𝑡)
74 difeq2 3722 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → (𝑂𝑥) = (𝑂𝐴))
7574eleq1d 2686 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂𝐴) ∈ 𝑡))
7660adantr 481 . . . . . . . . . . . . . . . 16 ((𝑡𝐿𝐴𝑡) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
77 simpr 477 . . . . . . . . . . . . . . . 16 ((𝑡𝐿𝐴𝑡) → 𝐴𝑡)
7875, 76, 77rspcdva 3316 . . . . . . . . . . . . . . 15 ((𝑡𝐿𝐴𝑡) → (𝑂𝐴) ∈ 𝑡)
7966, 73, 78syl2anc 693 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑂𝐴) ∈ 𝑡)
80 simpllr 799 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸))
8180simprd 479 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑥) ∈ 𝐸)
8281, 21syl6eleq 2711 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑥) ∈ {𝑡𝐿𝑇𝑡})
83 vex 3203 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
8483inex2 4800 . . . . . . . . . . . . . . . . 17 (𝐴𝑥) ∈ V
85 elintrabg 4489 . . . . . . . . . . . . . . . . 17 ((𝐴𝑥) ∈ V → ((𝐴𝑥) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡)))
8684, 85mp1i 13 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ((𝐴𝑥) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡)))
8782, 86mpbid 222 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡))
88 simpr 477 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑇𝑡)
89 rspa 2930 . . . . . . . . . . . . . . . 16 ((∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡) ∧ 𝑡𝐿) → (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡))
9089imp 445 . . . . . . . . . . . . . . 15 (((∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑥) ∈ 𝑡) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑥) ∈ 𝑡)
9187, 66, 88, 90syl21anc 1325 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑥) ∈ 𝑡)
92 incom 3805 . . . . . . . . . . . . . . . 16 ((𝑂𝐴) ∩ (𝐴𝑥)) = ((𝐴𝑥) ∩ (𝑂𝐴))
93 inss1 3833 . . . . . . . . . . . . . . . . 17 (𝐴𝑥) ⊆ 𝐴
94 disjdif 4040 . . . . . . . . . . . . . . . . 17 (𝐴 ∩ (𝑂𝐴)) = ∅
95 ssdisj 4026 . . . . . . . . . . . . . . . . 17 (((𝐴𝑥) ⊆ 𝐴 ∧ (𝐴 ∩ (𝑂𝐴)) = ∅) → ((𝐴𝑥) ∩ (𝑂𝐴)) = ∅)
9693, 94, 95mp2an 708 . . . . . . . . . . . . . . . 16 ((𝐴𝑥) ∩ (𝑂𝐴)) = ∅
9792, 96eqtri 2644 . . . . . . . . . . . . . . 15 ((𝑂𝐴) ∩ (𝐴𝑥)) = ∅
9897a1i 11 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ((𝑂𝐴) ∩ (𝐴𝑥)) = ∅)
9910, 66, 79, 91, 98unelldsys 30221 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ((𝑂𝐴) ∪ (𝐴𝑥)) ∈ 𝑡)
10059, 65, 99rspcdva 3316 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑂 ∖ ((𝑂𝐴) ∪ (𝐴𝑥))) ∈ 𝑡)
10157, 100eqeltrd 2701 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡)
102101ex 450 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) ∧ 𝑡𝐿) → (𝑇𝑡 → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡))
103102ralrimiva 2966 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → ∀𝑡𝐿 (𝑇𝑡 → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡))
104 inex1g 4801 . . . . . . . . . . . 12 (𝐴𝐸 → (𝐴 ∩ (𝑂𝑥)) ∈ V)
10546, 104syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴 ∩ (𝑂𝑥)) ∈ V)
106105adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → (𝐴 ∩ (𝑂𝑥)) ∈ V)
107 elintrabg 4489 . . . . . . . . . 10 ((𝐴 ∩ (𝑂𝑥)) ∈ V → ((𝐴 ∩ (𝑂𝑥)) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡)))
108106, 107syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → ((𝐴 ∩ (𝑂𝑥)) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴 ∩ (𝑂𝑥)) ∈ 𝑡)))
109103, 108mpbird 247 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → (𝐴 ∩ (𝑂𝑥)) ∈ {𝑡𝐿𝑇𝑡})
110109, 21syl6eleqr 2712 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸)
11133, 110jca 554 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝑂 ∧ (𝐴𝑥) ∈ 𝐸)) → ((𝑂𝑥) ∈ 𝒫 𝑂 ∧ (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸))
11229, 111sylan2b 492 . . . . 5 ((𝜑𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) → ((𝑂𝑥) ∈ 𝒫 𝑂 ∧ (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸))
113 ineq2 3808 . . . . . . 7 (𝑏 = (𝑂𝑥) → (𝐴𝑏) = (𝐴 ∩ (𝑂𝑥)))
114113eleq1d 2686 . . . . . 6 (𝑏 = (𝑂𝑥) → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸))
115114elrab 3363 . . . . 5 ((𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ ((𝑂𝑥) ∈ 𝒫 𝑂 ∧ (𝐴 ∩ (𝑂𝑥)) ∈ 𝐸))
116112, 115sylibr 224 . . . 4 ((𝜑𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) → (𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
117116ralrimiva 2966 . . 3 (𝜑 → ∀𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} (𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
1182ad2antrr 762 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑂𝑉)
119 sspwb 4917 . . . . . . . . 9 ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝑂 ↔ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝒫 𝑂)
1201, 119mpbi 220 . . . . . . . 8 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ⊆ 𝒫 𝒫 𝑂
121 simplr 792 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
122120, 121sseldi 3601 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝒫 𝑂)
123118, 122elpwunicl 29371 . . . . . 6 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑂)
124 uniin2 29368 . . . . . . . . . . . 12 𝑦𝑥 (𝐴𝑦) = (𝐴 𝑥)
125 vex 3203 . . . . . . . . . . . . . 14 𝑦 ∈ V
126125inex2 4800 . . . . . . . . . . . . 13 (𝐴𝑦) ∈ V
127126dfiun3 5380 . . . . . . . . . . . 12 𝑦𝑥 (𝐴𝑦) = ran (𝑦𝑥 ↦ (𝐴𝑦))
128124, 127eqtr3i 2646 . . . . . . . . . . 11 (𝐴 𝑥) = ran (𝑦𝑥 ↦ (𝐴𝑦))
129 simplr 792 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑡𝐿)
130 nfv 1843 . . . . . . . . . . . . . . . . . 18 𝑦(𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
131 nfv 1843 . . . . . . . . . . . . . . . . . . 19 𝑦 𝑥 ≼ ω
132 nfdisj1 4633 . . . . . . . . . . . . . . . . . . 19 𝑦Disj 𝑦𝑥 𝑦
133131, 132nfan 1828 . . . . . . . . . . . . . . . . . 18 𝑦(𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)
134130, 133nfan 1828 . . . . . . . . . . . . . . . . 17 𝑦((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
135 nfv 1843 . . . . . . . . . . . . . . . . 17 𝑦 𝑡𝐿
136134, 135nfan 1828 . . . . . . . . . . . . . . . 16 𝑦(((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿)
137 nfv 1843 . . . . . . . . . . . . . . . 16 𝑦 𝑇𝑡
138136, 137nfan 1828 . . . . . . . . . . . . . . 15 𝑦((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡)
139 elpwi 4168 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} → 𝑥 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
140139ad4antlr 769 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑥 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
141140sselda 3603 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → 𝑦 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
142 ineq2 3808 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑦 → (𝐴𝑏) = (𝐴𝑦))
143142eleq1d 2686 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑦 → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴𝑦) ∈ 𝐸))
144143elrab 3363 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ (𝑦 ∈ 𝒫 𝑂 ∧ (𝐴𝑦) ∈ 𝐸))
145144simprbi 480 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} → (𝐴𝑦) ∈ 𝐸)
146141, 145syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → (𝐴𝑦) ∈ 𝐸)
147 simpllr 799 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → 𝑡𝐿)
148 simplr 792 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → 𝑇𝑡)
14921eleq2i 2693 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑦) ∈ 𝐸 ↔ (𝐴𝑦) ∈ {𝑡𝐿𝑇𝑡})
150126elintrab 4488 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑦) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡))
151149, 150bitri 264 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑦) ∈ 𝐸 ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡))
152 rspa 2930 . . . . . . . . . . . . . . . . . . 19 ((∀𝑡𝐿 (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡) ∧ 𝑡𝐿) → (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡))
153151, 152sylanb 489 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑦) ∈ 𝐸𝑡𝐿) → (𝑇𝑡 → (𝐴𝑦) ∈ 𝑡))
154153imp 445 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑦) ∈ 𝐸𝑡𝐿) ∧ 𝑇𝑡) → (𝐴𝑦) ∈ 𝑡)
155146, 147, 148, 154syl21anc 1325 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) ∧ 𝑦𝑥) → (𝐴𝑦) ∈ 𝑡)
156155ex 450 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑦𝑥 → (𝐴𝑦) ∈ 𝑡))
157138, 156ralrimi 2957 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ∀𝑦𝑥 (𝐴𝑦) ∈ 𝑡)
158 eqid 2622 . . . . . . . . . . . . . . 15 (𝑦𝑥 ↦ (𝐴𝑦)) = (𝑦𝑥 ↦ (𝐴𝑦))
159158rnmptss 6392 . . . . . . . . . . . . . 14 (∀𝑦𝑥 (𝐴𝑦) ∈ 𝑡 → ran (𝑦𝑥 ↦ (𝐴𝑦)) ⊆ 𝑡)
160157, 159syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ⊆ 𝑡)
161129, 160sselpwd 4807 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡)
162 simpllr 799 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
163162simpld 475 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → 𝑥 ≼ ω)
164 1stcrestlem 21255 . . . . . . . . . . . . 13 (𝑥 ≼ ω → ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω)
165163, 164syl 17 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω)
166162simprd 479 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → Disj 𝑦𝑥 𝑦)
167 disjin2 29400 . . . . . . . . . . . . . 14 (Disj 𝑦𝑥 𝑦Disj 𝑦𝑥 (𝐴𝑦))
168 disjrnmpt 29398 . . . . . . . . . . . . . 14 (Disj 𝑦𝑥 (𝐴𝑦) → Disj 𝑧 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑧)
169166, 167, 1683syl 18 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → Disj 𝑧 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑧)
170 nfmpt1 4747 . . . . . . . . . . . . . . 15 𝑦(𝑦𝑥 ↦ (𝐴𝑦))
171170nfrn 5368 . . . . . . . . . . . . . 14 𝑦ran (𝑦𝑥 ↦ (𝐴𝑦))
172 nfcv 2764 . . . . . . . . . . . . . 14 𝑧𝑦
173 nfcv 2764 . . . . . . . . . . . . . 14 𝑦𝑧
174 id 22 . . . . . . . . . . . . . 14 (𝑦 = 𝑧𝑦 = 𝑧)
175171, 172, 173, 174cbvdisjf 29385 . . . . . . . . . . . . 13 (Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦Disj 𝑧 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑧)
176169, 175sylibr 224 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦)
177 breq1 4656 . . . . . . . . . . . . . . . 16 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → (𝑧 ≼ ω ↔ ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω))
178173, 171disjeq1f 29387 . . . . . . . . . . . . . . . 16 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → (Disj 𝑦𝑧 𝑦Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦))
179177, 178anbi12d 747 . . . . . . . . . . . . . . 15 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) ↔ (ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦)))
180 unieq 4444 . . . . . . . . . . . . . . . 16 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → 𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)))
181180eleq1d 2686 . . . . . . . . . . . . . . 15 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → ( 𝑧𝑡 ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡))
182179, 181imbi12d 334 . . . . . . . . . . . . . 14 (𝑧 = ran (𝑦𝑥 ↦ (𝐴𝑦)) → (((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡) ↔ ((ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡)))
18312simp3d 1075 . . . . . . . . . . . . . . . 16 (𝑡𝐿 → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
184 breq1 4656 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝑥 ≼ ω ↔ 𝑧 ≼ ω))
185 disjeq1 4627 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (Disj 𝑦𝑥 𝑦Disj 𝑦𝑧 𝑦))
186184, 185anbi12d 747 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) ↔ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)))
187 unieq 4444 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 𝑥 = 𝑧)
188187eleq1d 2686 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ( 𝑥𝑡 𝑧𝑡))
189186, 188imbi12d 334 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) ↔ ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡)))
190189cbvralv 3171 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) ↔ ∀𝑧 ∈ 𝒫 𝑡((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡))
191183, 190sylib 208 . . . . . . . . . . . . . . 15 (𝑡𝐿 → ∀𝑧 ∈ 𝒫 𝑡((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡))
192191adantr 481 . . . . . . . . . . . . . 14 ((𝑡𝐿 ∧ ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡) → ∀𝑧 ∈ 𝒫 𝑡((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑡))
193 simpr 477 . . . . . . . . . . . . . 14 ((𝑡𝐿 ∧ ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡)
194182, 192, 193rspcdva 3316 . . . . . . . . . . . . 13 ((𝑡𝐿 ∧ ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡) → ((ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡))
195194imp 445 . . . . . . . . . . . 12 (((𝑡𝐿 ∧ ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝒫 𝑡) ∧ (ran (𝑦𝑥 ↦ (𝐴𝑦)) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑦𝑥 ↦ (𝐴𝑦))𝑦)) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡)
196129, 161, 165, 176, 195syl22anc 1327 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → ran (𝑦𝑥 ↦ (𝐴𝑦)) ∈ 𝑡)
197128, 196syl5eqel 2705 . . . . . . . . . 10 (((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝑇𝑡) → (𝐴 𝑥) ∈ 𝑡)
198197ex 450 . . . . . . . . 9 ((((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) → (𝑇𝑡 → (𝐴 𝑥) ∈ 𝑡))
199198ralrimiva 2966 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → ∀𝑡𝐿 (𝑇𝑡 → (𝐴 𝑥) ∈ 𝑡))
200 vuniex 6954 . . . . . . . . . 10 𝑥 ∈ V
201200inex2 4800 . . . . . . . . 9 (𝐴 𝑥) ∈ V
202201elintrab 4488 . . . . . . . 8 ((𝐴 𝑥) ∈ {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡 → (𝐴 𝑥) ∈ 𝑡))
203199, 202sylibr 224 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝐴 𝑥) ∈ {𝑡𝐿𝑇𝑡})
204203, 21syl6eleqr 2712 . . . . . 6 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝐴 𝑥) ∈ 𝐸)
205 ineq2 3808 . . . . . . . 8 (𝑏 = 𝑥 → (𝐴𝑏) = (𝐴 𝑥))
206205eleq1d 2686 . . . . . . 7 (𝑏 = 𝑥 → ((𝐴𝑏) ∈ 𝐸 ↔ (𝐴 𝑥) ∈ 𝐸))
207206elrab 3363 . . . . . 6 ( 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ ( 𝑥 ∈ 𝒫 𝑂 ∧ (𝐴 𝑥) ∈ 𝐸))
208123, 204, 207sylanbrc 698 . . . . 5 (((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
209208ex 450 . . . 4 ((𝜑𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}))
210209ralrimiva 2966 . . 3 (𝜑 → ∀𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}))
21126, 117, 2103jca 1242 . 2 (𝜑 → (∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} (𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})))
21210isldsys 30219 . 2 ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝐿 ↔ ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} (𝑂𝑥) ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∧ ∀𝑥 ∈ 𝒫 {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 ∈ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸}))))
2137, 211, 212sylanbrc 698 1 (𝜑 → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158   cuni 4436   cint 4475   ciun 4520  Disj wdisj 4620   class class class wbr 4653  cmpt 4729  ran crn 5115  cfv 5888  ωcom 7065  cdom 7953  ficfi 8316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990
This theorem is referenced by:  ldgenpisyslem2  30227
  Copyright terms: Public domain W3C validator