| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwg | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. See also elpw2g 4827. (Contributed by NM, 6-Aug-2000.) |
| Ref | Expression |
|---|---|
| elpwg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2689 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐵 ↔ 𝐴 ∈ 𝒫 𝐵)) | |
| 2 | sseq1 3626 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | selpw 4165 | . 2 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
| 4 | 1, 2, 3 | vtoclbg 3267 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Copyright terms: Public domain | W3C validator |