Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqfnun Structured version   Visualization version   GIF version

Theorem eqfnun 33516
Description: Two functions on 𝐴𝐵 are equal if and only if they have equal restrictions to both 𝐴 and 𝐵. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
eqfnun ((𝐹 Fn (𝐴𝐵) ∧ 𝐺 Fn (𝐴𝐵)) → (𝐹 = 𝐺 ↔ ((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵))))

Proof of Theorem eqfnun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reseq1 5390 . . 3 (𝐹 = 𝐺 → (𝐹𝐴) = (𝐺𝐴))
2 reseq1 5390 . . 3 (𝐹 = 𝐺 → (𝐹𝐵) = (𝐺𝐵))
31, 2jca 554 . 2 (𝐹 = 𝐺 → ((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)))
4 elun 3753 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
5 fveq1 6190 . . . . . . . . 9 ((𝐹𝐴) = (𝐺𝐴) → ((𝐹𝐴)‘𝑥) = ((𝐺𝐴)‘𝑥))
6 fvres 6207 . . . . . . . . 9 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
75, 6sylan9req 2677 . . . . . . . 8 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐴) → ((𝐺𝐴)‘𝑥) = (𝐹𝑥))
8 fvres 6207 . . . . . . . . 9 (𝑥𝐴 → ((𝐺𝐴)‘𝑥) = (𝐺𝑥))
98adantl 482 . . . . . . . 8 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐴) → ((𝐺𝐴)‘𝑥) = (𝐺𝑥))
107, 9eqtr3d 2658 . . . . . . 7 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
1110adantlr 751 . . . . . 6 ((((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
12 fveq1 6190 . . . . . . . . 9 ((𝐹𝐵) = (𝐺𝐵) → ((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥))
13 fvres 6207 . . . . . . . . 9 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
1412, 13sylan9req 2677 . . . . . . . 8 (((𝐹𝐵) = (𝐺𝐵) ∧ 𝑥𝐵) → ((𝐺𝐵)‘𝑥) = (𝐹𝑥))
15 fvres 6207 . . . . . . . . 9 (𝑥𝐵 → ((𝐺𝐵)‘𝑥) = (𝐺𝑥))
1615adantl 482 . . . . . . . 8 (((𝐹𝐵) = (𝐺𝐵) ∧ 𝑥𝐵) → ((𝐺𝐵)‘𝑥) = (𝐺𝑥))
1714, 16eqtr3d 2658 . . . . . . 7 (((𝐹𝐵) = (𝐺𝐵) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐺𝑥))
1817adantll 750 . . . . . 6 ((((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐺𝑥))
1911, 18jaodan 826 . . . . 5 ((((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) ∧ (𝑥𝐴𝑥𝐵)) → (𝐹𝑥) = (𝐺𝑥))
204, 19sylan2b 492 . . . 4 ((((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) ∧ 𝑥 ∈ (𝐴𝐵)) → (𝐹𝑥) = (𝐺𝑥))
2120ralrimiva 2966 . . 3 (((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) → ∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = (𝐺𝑥))
22 eqfnfv 6311 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ 𝐺 Fn (𝐴𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = (𝐺𝑥)))
2321, 22syl5ibr 236 . 2 ((𝐹 Fn (𝐴𝐵) ∧ 𝐺 Fn (𝐴𝐵)) → (((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) → 𝐹 = 𝐺))
243, 23impbid2 216 1 ((𝐹 Fn (𝐴𝐵) ∧ 𝐺 Fn (𝐴𝐵)) → (𝐹 = 𝐺 ↔ ((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  cun 3572  cres 5116   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator