Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqfnun Structured version   Visualization version   Unicode version

Theorem eqfnun 33516
Description: Two functions on  A  u.  B are equal if and only if they have equal restrictions to both  A and  B. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
eqfnun  |-  ( ( F  Fn  ( A  u.  B )  /\  G  Fn  ( A  u.  B ) )  -> 
( F  =  G  <-> 
( ( F  |`  A )  =  ( G  |`  A )  /\  ( F  |`  B )  =  ( G  |`  B ) ) ) )

Proof of Theorem eqfnun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 reseq1 5390 . . 3  |-  ( F  =  G  ->  ( F  |`  A )  =  ( G  |`  A ) )
2 reseq1 5390 . . 3  |-  ( F  =  G  ->  ( F  |`  B )  =  ( G  |`  B ) )
31, 2jca 554 . 2  |-  ( F  =  G  ->  (
( F  |`  A )  =  ( G  |`  A )  /\  ( F  |`  B )  =  ( G  |`  B ) ) )
4 elun 3753 . . . . 5  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
5 fveq1 6190 . . . . . . . . 9  |-  ( ( F  |`  A )  =  ( G  |`  A )  ->  (
( F  |`  A ) `
 x )  =  ( ( G  |`  A ) `  x
) )
6 fvres 6207 . . . . . . . . 9  |-  ( x  e.  A  ->  (
( F  |`  A ) `
 x )  =  ( F `  x
) )
75, 6sylan9req 2677 . . . . . . . 8  |-  ( ( ( F  |`  A )  =  ( G  |`  A )  /\  x  e.  A )  ->  (
( G  |`  A ) `
 x )  =  ( F `  x
) )
8 fvres 6207 . . . . . . . . 9  |-  ( x  e.  A  ->  (
( G  |`  A ) `
 x )  =  ( G `  x
) )
98adantl 482 . . . . . . . 8  |-  ( ( ( F  |`  A )  =  ( G  |`  A )  /\  x  e.  A )  ->  (
( G  |`  A ) `
 x )  =  ( G `  x
) )
107, 9eqtr3d 2658 . . . . . . 7  |-  ( ( ( F  |`  A )  =  ( G  |`  A )  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )
1110adantlr 751 . . . . . 6  |-  ( ( ( ( F  |`  A )  =  ( G  |`  A )  /\  ( F  |`  B )  =  ( G  |`  B ) )  /\  x  e.  A )  ->  ( F `  x
)  =  ( G `
 x ) )
12 fveq1 6190 . . . . . . . . 9  |-  ( ( F  |`  B )  =  ( G  |`  B )  ->  (
( F  |`  B ) `
 x )  =  ( ( G  |`  B ) `  x
) )
13 fvres 6207 . . . . . . . . 9  |-  ( x  e.  B  ->  (
( F  |`  B ) `
 x )  =  ( F `  x
) )
1412, 13sylan9req 2677 . . . . . . . 8  |-  ( ( ( F  |`  B )  =  ( G  |`  B )  /\  x  e.  B )  ->  (
( G  |`  B ) `
 x )  =  ( F `  x
) )
15 fvres 6207 . . . . . . . . 9  |-  ( x  e.  B  ->  (
( G  |`  B ) `
 x )  =  ( G `  x
) )
1615adantl 482 . . . . . . . 8  |-  ( ( ( F  |`  B )  =  ( G  |`  B )  /\  x  e.  B )  ->  (
( G  |`  B ) `
 x )  =  ( G `  x
) )
1714, 16eqtr3d 2658 . . . . . . 7  |-  ( ( ( F  |`  B )  =  ( G  |`  B )  /\  x  e.  B )  ->  ( F `  x )  =  ( G `  x ) )
1817adantll 750 . . . . . 6  |-  ( ( ( ( F  |`  A )  =  ( G  |`  A )  /\  ( F  |`  B )  =  ( G  |`  B ) )  /\  x  e.  B )  ->  ( F `  x
)  =  ( G `
 x ) )
1911, 18jaodan 826 . . . . 5  |-  ( ( ( ( F  |`  A )  =  ( G  |`  A )  /\  ( F  |`  B )  =  ( G  |`  B ) )  /\  ( x  e.  A  \/  x  e.  B
) )  ->  ( F `  x )  =  ( G `  x ) )
204, 19sylan2b 492 . . . 4  |-  ( ( ( ( F  |`  A )  =  ( G  |`  A )  /\  ( F  |`  B )  =  ( G  |`  B ) )  /\  x  e.  ( A  u.  B ) )  -> 
( F `  x
)  =  ( G `
 x ) )
2120ralrimiva 2966 . . 3  |-  ( ( ( F  |`  A )  =  ( G  |`  A )  /\  ( F  |`  B )  =  ( G  |`  B ) )  ->  A. x  e.  ( A  u.  B
) ( F `  x )  =  ( G `  x ) )
22 eqfnfv 6311 . . 3  |-  ( ( F  Fn  ( A  u.  B )  /\  G  Fn  ( A  u.  B ) )  -> 
( F  =  G  <->  A. x  e.  ( A  u.  B )
( F `  x
)  =  ( G `
 x ) ) )
2321, 22syl5ibr 236 . 2  |-  ( ( F  Fn  ( A  u.  B )  /\  G  Fn  ( A  u.  B ) )  -> 
( ( ( F  |`  A )  =  ( G  |`  A )  /\  ( F  |`  B )  =  ( G  |`  B ) )  ->  F  =  G )
)
243, 23impbid2 216 1  |-  ( ( F  Fn  ( A  u.  B )  /\  G  Fn  ( A  u.  B ) )  -> 
( F  =  G  <-> 
( ( F  |`  A )  =  ( G  |`  A )  /\  ( F  |`  B )  =  ( G  |`  B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    u. cun 3572    |` cres 5116    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator