Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqrelf Structured version   Visualization version   GIF version

Theorem eqrelf 34020
Description: The equality connective between relations. (Contributed by Peter Mazsa, 25-Jun-2019.)
Hypotheses
Ref Expression
eqrelf.1 𝑥𝐴
eqrelf.2 𝑥𝐵
eqrelf.3 𝑦𝐴
eqrelf.4 𝑦𝐵
Assertion
Ref Expression
eqrelf ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem eqrelf
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqrel 5209 . 2 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑢𝑣(⟨𝑢, 𝑣⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵)))
2 nfv 1843 . . 3 𝑢(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
3 nfv 1843 . . 3 𝑣(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
4 eqrelf.1 . . . . 5 𝑥𝐴
54nfel2 2781 . . . 4 𝑥𝑢, 𝑣⟩ ∈ 𝐴
6 eqrelf.2 . . . . 5 𝑥𝐵
76nfel2 2781 . . . 4 𝑥𝑢, 𝑣⟩ ∈ 𝐵
85, 7nfbi 1833 . . 3 𝑥(⟨𝑢, 𝑣⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵)
9 eqrelf.3 . . . . 5 𝑦𝐴
109nfel2 2781 . . . 4 𝑦𝑢, 𝑣⟩ ∈ 𝐴
11 eqrelf.4 . . . . 5 𝑦𝐵
1211nfel2 2781 . . . 4 𝑦𝑢, 𝑣⟩ ∈ 𝐵
1310, 12nfbi 1833 . . 3 𝑦(⟨𝑢, 𝑣⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵)
14 opeq12 4404 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → ⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩)
1514eleq1d 2686 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐴))
1614eleq1d 2686 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵))
1715, 16bibi12d 335 . . 3 ((𝑥 = 𝑢𝑦 = 𝑣) → ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ (⟨𝑢, 𝑣⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵)))
182, 3, 8, 13, 17cbval2 2279 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∀𝑢𝑣(⟨𝑢, 𝑣⟩ ∈ 𝐴 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝐵))
191, 18syl6bbr 278 1 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wcel 1990  wnfc 2751  cop 4183  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by:  vvdifopab  34024
  Copyright terms: Public domain W3C validator