Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vvdifopab Structured version   Visualization version   GIF version

Theorem vvdifopab 34024
Description: Ordered-pair class abstraction defined by a negation. (Contributed by Peter Mazsa, 25-Jun-2019.)
Assertion
Ref Expression
vvdifopab ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem vvdifopab
StepHypRef Expression
1 opabid 4982 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
21notbii 310 . . . 4 (¬ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ¬ 𝜑)
3 opelvvdif 34023 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ¬ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
43el2v 33984 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ¬ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
5 opabid 4982 . . . 4 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑} ↔ ¬ 𝜑)
62, 4, 53bitr4i 292 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑})
76gen2 1723 . 2 𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑})
8 relxp 5227 . . . 4 Rel (V × V)
9 reldif 5238 . . . 4 (Rel (V × V) → Rel ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
108, 9ax-mp 5 . . 3 Rel ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
11 relopab 5247 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}
12 nfcv 2764 . . . . 5 𝑥(V × V)
13 nfopab1 4719 . . . . 5 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
1412, 13nfdif 3731 . . . 4 𝑥((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
15 nfopab1 4719 . . . 4 𝑥{⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}
16 nfcv 2764 . . . . 5 𝑦(V × V)
17 nfopab2 4720 . . . . 5 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
1816, 17nfdif 3731 . . . 4 𝑦((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
19 nfopab2 4720 . . . 4 𝑦{⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}
2014, 15, 18, 19eqrelf 34020 . . 3 ((Rel ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ∧ Rel {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}) → (((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑} ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑})))
2110, 11, 20mp2an 708 . 2 (((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑} ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}))
227, 21mpbir 221 1 ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wal 1481   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  cop 4183  {copab 4712   × cxp 5112  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator