MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqvinop Structured version   Visualization version   GIF version

Theorem eqvinop 4955
Description: A variable introduction law for ordered pairs. Analogue of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.)
Hypotheses
Ref Expression
eqvinop.1 𝐵 ∈ V
eqvinop.2 𝐶 ∈ V
Assertion
Ref Expression
eqvinop (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem eqvinop
StepHypRef Expression
1 eqvinop.1 . . . . . . . 8 𝐵 ∈ V
2 eqvinop.2 . . . . . . . 8 𝐶 ∈ V
31, 2opth2 4949 . . . . . . 7 (⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩ ↔ (𝑥 = 𝐵𝑦 = 𝐶))
43anbi2i 730 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 = 𝐵𝑦 = 𝐶)))
5 ancom 466 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 = 𝐵𝑦 = 𝐶)) ↔ ((𝑥 = 𝐵𝑦 = 𝐶) ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
6 anass 681 . . . . . 6 (((𝑥 = 𝐵𝑦 = 𝐶) ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ↔ (𝑥 = 𝐵 ∧ (𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)))
74, 5, 63bitri 286 . . . . 5 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩) ↔ (𝑥 = 𝐵 ∧ (𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)))
87exbii 1774 . . . 4 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩) ↔ ∃𝑦(𝑥 = 𝐵 ∧ (𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)))
9 19.42v 1918 . . . 4 (∃𝑦(𝑥 = 𝐵 ∧ (𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)) ↔ (𝑥 = 𝐵 ∧ ∃𝑦(𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)))
10 opeq2 4403 . . . . . . 7 (𝑦 = 𝐶 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝐶⟩)
1110eqeq2d 2632 . . . . . 6 (𝑦 = 𝐶 → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, 𝐶⟩))
122, 11ceqsexv 3242 . . . . 5 (∃𝑦(𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩) ↔ 𝐴 = ⟨𝑥, 𝐶⟩)
1312anbi2i 730 . . . 4 ((𝑥 = 𝐵 ∧ ∃𝑦(𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)) ↔ (𝑥 = 𝐵𝐴 = ⟨𝑥, 𝐶⟩))
148, 9, 133bitri 286 . . 3 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩) ↔ (𝑥 = 𝐵𝐴 = ⟨𝑥, 𝐶⟩))
1514exbii 1774 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩) ↔ ∃𝑥(𝑥 = 𝐵𝐴 = ⟨𝑥, 𝐶⟩))
16 opeq1 4402 . . . 4 (𝑥 = 𝐵 → ⟨𝑥, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
1716eqeq2d 2632 . . 3 (𝑥 = 𝐵 → (𝐴 = ⟨𝑥, 𝐶⟩ ↔ 𝐴 = ⟨𝐵, 𝐶⟩))
181, 17ceqsexv 3242 . 2 (∃𝑥(𝑥 = 𝐵𝐴 = ⟨𝑥, 𝐶⟩) ↔ 𝐴 = ⟨𝐵, 𝐶⟩)
1915, 18bitr2i 265 1 (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  cop 4183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184
This theorem is referenced by:  copsexg  4956  ralxpf  5268  oprabid  6677
  Copyright terms: Public domain W3C validator