![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opth2 | Structured version Visualization version GIF version |
Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014.) |
Ref | Expression |
---|---|
opth2.1 | ⊢ 𝐶 ∈ V |
opth2.2 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
opth2 | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth2.1 | . 2 ⊢ 𝐶 ∈ V | |
2 | opth2.2 | . 2 ⊢ 𝐷 ∈ V | |
3 | opthg2 4948 | . 2 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | |
4 | 1, 2, 3 | mp2an 708 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 〈cop 4183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 |
This theorem is referenced by: eqvinop 4955 opelxp 5146 fsn 6402 opiota 7229 canthwe 9473 ltresr 9961 mat1dimelbas 20277 fmucndlem 22095 hgt750lemb 30734 diblsmopel 36460 cdlemn7 36492 dihordlem7 36503 xihopellsmN 36543 dihopellsm 36544 dihpN 36625 |
Copyright terms: Public domain | W3C validator |