MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otthg Structured version   Visualization version   GIF version

Theorem otthg 4954
Description: Ordered triple theorem, closed form. (Contributed by Alexander van der Vekens, 10-Mar-2018.)
Assertion
Ref Expression
otthg ((𝐴𝑈𝐵𝑉𝐶𝑊) → (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))

Proof of Theorem otthg
StepHypRef Expression
1 df-ot 4186 . . 3 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
2 df-ot 4186 . . 3 𝐷, 𝐸, 𝐹⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹
31, 2eqeq12i 2636 . 2 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩ ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹⟩)
4 opex 4932 . . . . 5 𝐴, 𝐵⟩ ∈ V
5 opthg 4946 . . . . 5 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑊) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹⟩ ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐷, 𝐸⟩ ∧ 𝐶 = 𝐹)))
64, 5mpan 706 . . . 4 (𝐶𝑊 → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹⟩ ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐷, 𝐸⟩ ∧ 𝐶 = 𝐹)))
7 opthg 4946 . . . . . 6 ((𝐴𝑈𝐵𝑉) → (⟨𝐴, 𝐵⟩ = ⟨𝐷, 𝐸⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸)))
87anbi1d 741 . . . . 5 ((𝐴𝑈𝐵𝑉) → ((⟨𝐴, 𝐵⟩ = ⟨𝐷, 𝐸⟩ ∧ 𝐶 = 𝐹) ↔ ((𝐴 = 𝐷𝐵 = 𝐸) ∧ 𝐶 = 𝐹)))
9 df-3an 1039 . . . . 5 ((𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹) ↔ ((𝐴 = 𝐷𝐵 = 𝐸) ∧ 𝐶 = 𝐹))
108, 9syl6bbr 278 . . . 4 ((𝐴𝑈𝐵𝑉) → ((⟨𝐴, 𝐵⟩ = ⟨𝐷, 𝐸⟩ ∧ 𝐶 = 𝐹) ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
116, 10sylan9bbr 737 . . 3 (((𝐴𝑈𝐵𝑉) ∧ 𝐶𝑊) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
12113impa 1259 . 2 ((𝐴𝑈𝐵𝑉𝐶𝑊) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
133, 12syl5bb 272 1 ((𝐴𝑈𝐵𝑉𝐶𝑊) → (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183  cotp 4185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186
This theorem is referenced by:  otsndisj  4979  otiunsndisj  4980  otiunsndisjX  41298
  Copyright terms: Public domain W3C validator