MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ercgrg Structured version   Visualization version   GIF version

Theorem ercgrg 25412
Description: The shape congruence relation is an equivalence relation. Statement 4.4 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.)
Hypothesis
Ref Expression
ercgrg.p 𝑃 = (Base‘𝐺)
Assertion
Ref Expression
ercgrg (𝐺 ∈ TarskiG → (cgrG‘𝐺) Er (𝑃pm ℝ))

Proof of Theorem ercgrg
Dummy variables 𝑎 𝑏 𝑔 𝑖 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cgrg 25406 . . . 4 cgrG = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
21relmptopab 6883 . . 3 Rel (cgrG‘𝐺)
32a1i 11 . 2 (𝐺 ∈ TarskiG → Rel (cgrG‘𝐺))
4 ercgrg.p . . . . . . 7 𝑃 = (Base‘𝐺)
5 eqid 2622 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
6 eqid 2622 . . . . . . 7 (cgrG‘𝐺) = (cgrG‘𝐺)
74, 5, 6iscgrg 25407 . . . . . 6 (𝐺 ∈ TarskiG → (𝑥(cgrG‘𝐺)𝑦 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗))))))
87biimpa 501 . . . . 5 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))))
98simpld 475 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)))
109ancomd 467 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (𝑦 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)))
118simprd 479 . . . . . 6 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗))))
1211simpld 475 . . . . 5 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → dom 𝑥 = dom 𝑦)
1312eqcomd 2628 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → dom 𝑦 = dom 𝑥)
14 simpl 473 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → (𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦))
15 simprl 794 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑖 ∈ dom 𝑦)
1612adantr 481 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → dom 𝑥 = dom 𝑦)
1715, 16eleqtrrd 2704 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑖 ∈ dom 𝑥)
18 simprr 796 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑗 ∈ dom 𝑦)
1918, 16eleqtrrd 2704 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑗 ∈ dom 𝑥)
2011simprd 479 . . . . . . . . 9 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2120r19.21bi 2932 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ 𝑖 ∈ dom 𝑥) → ∀𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2221r19.21bi 2932 . . . . . . 7 ((((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ 𝑖 ∈ dom 𝑥) ∧ 𝑗 ∈ dom 𝑥) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2314, 17, 19, 22syl21anc 1325 . . . . . 6 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2423eqcomd 2628 . . . . 5 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
2524ralrimivva 2971 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
2613, 25jca 554 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (dom 𝑦 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))
274, 5, 6iscgrg 25407 . . . 4 (𝐺 ∈ TarskiG → (𝑦(cgrG‘𝐺)𝑥 ↔ ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))))
2827adantr 481 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (𝑦(cgrG‘𝐺)𝑥 ↔ ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))))
2910, 26, 28mpbir2and 957 . 2 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → 𝑦(cgrG‘𝐺)𝑥)
309simpld 475 . . . . 5 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → 𝑥 ∈ (𝑃pm ℝ))
3130adantrr 753 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → 𝑥 ∈ (𝑃pm ℝ))
324, 5, 6iscgrg 25407 . . . . . . . 8 (𝐺 ∈ TarskiG → (𝑦(cgrG‘𝐺)𝑧 ↔ ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))))
3332biimpa 501 . . . . . . 7 ((𝐺 ∈ TarskiG ∧ 𝑦(cgrG‘𝐺)𝑧) → ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))))
3433adantrl 752 . . . . . 6 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))))
3534simpld 475 . . . . 5 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)))
3635simprd 479 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → 𝑧 ∈ (𝑃pm ℝ))
3731, 36jca 554 . . 3 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (𝑥 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)))
388adantrr 753 . . . . . . 7 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))))
3938simprd 479 . . . . . 6 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗))))
4039simpld 475 . . . . 5 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → dom 𝑥 = dom 𝑦)
4134simprd 479 . . . . . 6 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))
4241simpld 475 . . . . 5 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → dom 𝑦 = dom 𝑧)
4340, 42eqtrd 2656 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → dom 𝑥 = dom 𝑧)
4439simprd 479 . . . . . . . . 9 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
4544r19.21bi 2932 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑥) → ∀𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
4645r19.21bi 2932 . . . . . . 7 ((((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑥) ∧ 𝑗 ∈ dom 𝑥) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
4746anasss 679 . . . . . 6 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
48 simpl 473 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → (𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)))
49 simprl 794 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑖 ∈ dom 𝑥)
5040adantr 481 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → dom 𝑥 = dom 𝑦)
5149, 50eleqtrd 2703 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑖 ∈ dom 𝑦)
52 simprr 796 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑗 ∈ dom 𝑥)
5352, 50eleqtrd 2703 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑗 ∈ dom 𝑦)
5441simprd 479 . . . . . . . . 9 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5554r19.21bi 2932 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑦) → ∀𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5655r19.21bi 2932 . . . . . . 7 ((((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑦) ∧ 𝑗 ∈ dom 𝑦) → ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5748, 51, 53, 56syl21anc 1325 . . . . . 6 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5847, 57eqtrd 2656 . . . . 5 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5958ralrimivva 2971 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
6043, 59jca 554 . . 3 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (dom 𝑥 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))
614, 5, 6iscgrg 25407 . . . 4 (𝐺 ∈ TarskiG → (𝑥(cgrG‘𝐺)𝑧 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))))
6261adantr 481 . . 3 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (𝑥(cgrG‘𝐺)𝑧 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))))
6337, 60, 62mpbir2and 957 . 2 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → 𝑥(cgrG‘𝐺)𝑧)
644, 5, 6iscgrg 25407 . . 3 (𝐺 ∈ TarskiG → (𝑥(cgrG‘𝐺)𝑥 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))))
65 pm4.24 675 . . . 4 (𝑥 ∈ (𝑃pm ℝ) ↔ (𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)))
66 eqid 2622 . . . . . 6 dom 𝑥 = dom 𝑥
67 eqidd 2623 . . . . . . 7 ((𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
6867rgen2a 2977 . . . . . 6 𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))
6966, 68pm3.2i 471 . . . . 5 (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
7069biantru 526 . . . 4 ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))))
7165, 70bitri 264 . . 3 (𝑥 ∈ (𝑃pm ℝ) ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))))
7264, 71syl6rbbr 279 . 2 (𝐺 ∈ TarskiG → (𝑥 ∈ (𝑃pm ℝ) ↔ 𝑥(cgrG‘𝐺)𝑥))
733, 29, 63, 72iserd 7768 1 (𝐺 ∈ TarskiG → (cgrG‘𝐺) Er (𝑃pm ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200   class class class wbr 4653  dom cdm 5114  Rel wrel 5119  cfv 5888  (class class class)co 6650   Er wer 7739  pm cpm 7858  cr 9935  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  cgrGccgrg 25405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-er 7742  df-cgrg 25406
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator