| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erclwwlkseq | Structured version Visualization version GIF version | ||
| Description: Two classes are equivalent regarding ∼ if both are words and one is the other cyclically shifted. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.) |
| Ref | Expression |
|---|---|
| erclwwlks.r | ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} |
| Ref | Expression |
|---|---|
| erclwwlkseq | ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑈 ∼ 𝑊 ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2689 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑢 ∈ (ClWWalks‘𝐺) ↔ 𝑈 ∈ (ClWWalks‘𝐺))) | |
| 2 | 1 | adantr 481 | . . 3 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (𝑢 ∈ (ClWWalks‘𝐺) ↔ 𝑈 ∈ (ClWWalks‘𝐺))) |
| 3 | eleq1 2689 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤 ∈ (ClWWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺))) | |
| 4 | 3 | adantl 482 | . . 3 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (𝑤 ∈ (ClWWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺))) |
| 5 | fveq2 6191 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (#‘𝑤) = (#‘𝑊)) | |
| 6 | 5 | oveq2d 6666 | . . . . 5 ⊢ (𝑤 = 𝑊 → (0...(#‘𝑤)) = (0...(#‘𝑊))) |
| 7 | 6 | adantl 482 | . . . 4 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (0...(#‘𝑤)) = (0...(#‘𝑊))) |
| 8 | simpl 473 | . . . . 5 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → 𝑢 = 𝑈) | |
| 9 | oveq1 6657 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (𝑤 cyclShift 𝑛) = (𝑊 cyclShift 𝑛)) | |
| 10 | 9 | adantl 482 | . . . . 5 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (𝑤 cyclShift 𝑛) = (𝑊 cyclShift 𝑛)) |
| 11 | 8, 10 | eqeq12d 2637 | . . . 4 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (𝑢 = (𝑤 cyclShift 𝑛) ↔ 𝑈 = (𝑊 cyclShift 𝑛))) |
| 12 | 7, 11 | rexeqbidv 3153 | . . 3 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → (∃𝑛 ∈ (0...(#‘𝑤))𝑢 = (𝑤 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(#‘𝑊))𝑈 = (𝑊 cyclShift 𝑛))) |
| 13 | 2, 4, 12 | 3anbi123d 1399 | . 2 ⊢ ((𝑢 = 𝑈 ∧ 𝑤 = 𝑊) → ((𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑤))𝑢 = (𝑤 cyclShift 𝑛)) ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)))) |
| 14 | erclwwlks.r | . 2 ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} | |
| 15 | 13, 14 | brabga 4989 | 1 ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑈 ∼ 𝑊 ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑊))𝑈 = (𝑊 cyclShift 𝑛)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 class class class wbr 4653 {copab 4712 ‘cfv 5888 (class class class)co 6650 0cc0 9936 ...cfz 12326 #chash 13117 cyclShift ccsh 13534 ClWWalkscclwwlks 26875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: erclwwlkseqlen 26933 erclwwlksref 26934 erclwwlkssym 26935 erclwwlkstr 26936 |
| Copyright terms: Public domain | W3C validator |