MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkseq Structured version   Visualization version   Unicode version

Theorem erclwwlkseq 26932
Description: Two classes are equivalent regarding  .~ if both are words and one is the other cyclically shifted. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.)
Hypothesis
Ref Expression
erclwwlks.r  |-  .~  =  { <. u ,  w >.  |  ( u  e.  (ClWWalks `  G )  /\  w  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  w
) ) u  =  ( w cyclShift  n )
) }
Assertion
Ref Expression
erclwwlkseq  |-  ( ( U  e.  X  /\  W  e.  Y )  ->  ( U  .~  W  <->  ( U  e.  (ClWWalks `  G
)  /\  W  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  W
) ) U  =  ( W cyclShift  n )
) ) )
Distinct variable groups:    n, G, u, w    U, n, u, w    n, W, u, w
Allowed substitution hints:    .~ ( w, u, n)    X( w, u, n)    Y( w, u, n)

Proof of Theorem erclwwlkseq
StepHypRef Expression
1 eleq1 2689 . . . 4  |-  ( u  =  U  ->  (
u  e.  (ClWWalks `  G
)  <->  U  e.  (ClWWalks `  G ) ) )
21adantr 481 . . 3  |-  ( ( u  =  U  /\  w  =  W )  ->  ( u  e.  (ClWWalks `  G )  <->  U  e.  (ClWWalks `  G ) ) )
3 eleq1 2689 . . . 4  |-  ( w  =  W  ->  (
w  e.  (ClWWalks `  G
)  <->  W  e.  (ClWWalks `  G ) ) )
43adantl 482 . . 3  |-  ( ( u  =  U  /\  w  =  W )  ->  ( w  e.  (ClWWalks `  G )  <->  W  e.  (ClWWalks `  G ) ) )
5 fveq2 6191 . . . . . 6  |-  ( w  =  W  ->  ( # `
 w )  =  ( # `  W
) )
65oveq2d 6666 . . . . 5  |-  ( w  =  W  ->  (
0 ... ( # `  w
) )  =  ( 0 ... ( # `  W ) ) )
76adantl 482 . . . 4  |-  ( ( u  =  U  /\  w  =  W )  ->  ( 0 ... ( # `
 w ) )  =  ( 0 ... ( # `  W
) ) )
8 simpl 473 . . . . 5  |-  ( ( u  =  U  /\  w  =  W )  ->  u  =  U )
9 oveq1 6657 . . . . . 6  |-  ( w  =  W  ->  (
w cyclShift  n )  =  ( W cyclShift  n ) )
109adantl 482 . . . . 5  |-  ( ( u  =  U  /\  w  =  W )  ->  ( w cyclShift  n )  =  ( W cyclShift  n ) )
118, 10eqeq12d 2637 . . . 4  |-  ( ( u  =  U  /\  w  =  W )  ->  ( u  =  ( w cyclShift  n )  <->  U  =  ( W cyclShift  n ) ) )
127, 11rexeqbidv 3153 . . 3  |-  ( ( u  =  U  /\  w  =  W )  ->  ( E. n  e.  ( 0 ... ( # `
 w ) ) u  =  ( w cyclShift  n )  <->  E. n  e.  ( 0 ... ( # `
 W ) ) U  =  ( W cyclShift  n ) ) )
132, 4, 123anbi123d 1399 . 2  |-  ( ( u  =  U  /\  w  =  W )  ->  ( ( u  e.  (ClWWalks `  G )  /\  w  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  w
) ) u  =  ( w cyclShift  n )
)  <->  ( U  e.  (ClWWalks `  G )  /\  W  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  W
) ) U  =  ( W cyclShift  n )
) ) )
14 erclwwlks.r . 2  |-  .~  =  { <. u ,  w >.  |  ( u  e.  (ClWWalks `  G )  /\  w  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  w
) ) u  =  ( w cyclShift  n )
) }
1513, 14brabga 4989 1  |-  ( ( U  e.  X  /\  W  e.  Y )  ->  ( U  .~  W  <->  ( U  e.  (ClWWalks `  G
)  /\  W  e.  (ClWWalks `  G )  /\  E. n  e.  ( 0 ... ( # `  W
) ) U  =  ( W cyclShift  n )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653   {copab 4712   ` cfv 5888  (class class class)co 6650   0cc0 9936   ...cfz 12326   #chash 13117   cyclShift ccsh 13534  ClWWalkscclwwlks 26875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  erclwwlkseqlen  26933  erclwwlksref  26934  erclwwlkssym  26935  erclwwlkstr  26936
  Copyright terms: Public domain W3C validator