MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkssym Structured version   Visualization version   GIF version

Theorem erclwwlkssym 26935
Description: is a symmetric relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 8-Apr-2018.) (Revised by AV, 29-Apr-2021.)
Hypothesis
Ref Expression
erclwwlks.r = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlkssym (𝑥 𝑦𝑦 𝑥)
Distinct variable groups:   𝑛,𝐺,𝑢,𝑤   𝑥,𝑛,𝑢,𝑤,𝑦
Allowed substitution hints:   (𝑥,𝑦,𝑤,𝑢,𝑛)   𝐺(𝑥,𝑦)

Proof of Theorem erclwwlkssym
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . 2 𝑥 ∈ V
2 vex 3203 . 2 𝑦 ∈ V
3 erclwwlks.r . . . 4 = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
43erclwwlkseqlen 26933 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → (#‘𝑥) = (#‘𝑦)))
53erclwwlkseq 26932 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))))
6 simpl2 1065 . . . . . . 7 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → 𝑦 ∈ (ClWWalks‘𝐺))
7 simpl1 1064 . . . . . . 7 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → 𝑥 ∈ (ClWWalks‘𝐺))
8 eqid 2622 . . . . . . . . . . . . . . . . . 18 (Vtx‘𝐺) = (Vtx‘𝐺)
98clwwlkbp 26883 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ≠ ∅))
109simp2d 1074 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (ClWWalks‘𝐺) → 𝑦 ∈ Word (Vtx‘𝐺))
1110ad2antlr 763 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (#‘𝑥) = (#‘𝑦)) → 𝑦 ∈ Word (Vtx‘𝐺))
12 simpr 477 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (#‘𝑥) = (#‘𝑦)) → (#‘𝑥) = (#‘𝑦))
1311, 12cshwcshid 13573 . . . . . . . . . . . . . 14 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (#‘𝑥) = (#‘𝑦)) → ((𝑛 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
1413expd 452 . . . . . . . . . . . . 13 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (#‘𝑥) = (#‘𝑦)) → (𝑛 ∈ (0...(#‘𝑦)) → (𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))))
1514rexlimdv 3030 . . . . . . . . . . . 12 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (#‘𝑥) = (#‘𝑦)) → (∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
1615ex 450 . . . . . . . . . . 11 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → ((#‘𝑥) = (#‘𝑦) → (∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))))
1716com23 86 . . . . . . . . . 10 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → (∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((#‘𝑥) = (#‘𝑦) → ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))))
18173impia 1261 . . . . . . . . 9 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((#‘𝑥) = (#‘𝑦) → ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
1918imp 445 . . . . . . . 8 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))
20 oveq2 6658 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
2120eqeq2d 2632 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift 𝑚)))
2221cbvrexv 3172 . . . . . . . 8 (∃𝑛 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))
2319, 22sylibr 224 . . . . . . 7 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → ∃𝑛 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))
246, 7, 233jca 1242 . . . . . 6 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
253erclwwlkseq 26932 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 𝑥 ↔ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))))
2625ancoms 469 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑦 𝑥 ↔ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))))
2724, 26syl5ibr 236 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → 𝑦 𝑥))
2827expd 452 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((#‘𝑥) = (#‘𝑦) → 𝑦 𝑥)))
295, 28sylbid 230 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → ((#‘𝑥) = (#‘𝑦) → 𝑦 𝑥)))
304, 29mpdd 43 . 2 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦𝑦 𝑥))
311, 2, 30mp2an 708 1 (𝑥 𝑦𝑦 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  Vcvv 3200  c0 3915   class class class wbr 4653  {copab 4712  cfv 5888  (class class class)co 6650  0cc0 9936  ...cfz 12326  #chash 13117  Word cword 13291   cyclShift ccsh 13534  Vtxcvtx 25874  ClWWalkscclwwlks 26875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535  df-clwwlks 26877
This theorem is referenced by:  erclwwlks  26937
  Copyright terms: Public domain W3C validator