MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlksneq Structured version   Visualization version   GIF version

Theorem erclwwlksneq 26944
Description: Two classes are equivalent regarding if both are words of the same fixed length and one is the other cyclically shifted. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlksn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlksn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlksneq ((𝑇𝑋𝑈𝑌) → (𝑇 𝑈 ↔ (𝑇𝑊𝑈𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛))))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑡,𝑁,𝑢   𝑇,𝑛,𝑡,𝑢   𝑈,𝑛,𝑡,𝑢
Allowed substitution hints:   (𝑢,𝑡,𝑛)   𝐺(𝑢,𝑡,𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑢,𝑡,𝑛)   𝑌(𝑢,𝑡,𝑛)

Proof of Theorem erclwwlksneq
StepHypRef Expression
1 eleq1 2689 . . . 4 (𝑡 = 𝑇 → (𝑡𝑊𝑇𝑊))
21adantr 481 . . 3 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑡𝑊𝑇𝑊))
3 eleq1 2689 . . . 4 (𝑢 = 𝑈 → (𝑢𝑊𝑈𝑊))
43adantl 482 . . 3 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑢𝑊𝑈𝑊))
5 simpl 473 . . . . 5 ((𝑡 = 𝑇𝑢 = 𝑈) → 𝑡 = 𝑇)
6 oveq1 6657 . . . . . 6 (𝑢 = 𝑈 → (𝑢 cyclShift 𝑛) = (𝑈 cyclShift 𝑛))
76adantl 482 . . . . 5 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑢 cyclShift 𝑛) = (𝑈 cyclShift 𝑛))
85, 7eqeq12d 2637 . . . 4 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑡 = (𝑢 cyclShift 𝑛) ↔ 𝑇 = (𝑈 cyclShift 𝑛)))
98rexbidv 3052 . . 3 ((𝑡 = 𝑇𝑢 = 𝑈) → (∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛)))
102, 4, 93anbi123d 1399 . 2 ((𝑡 = 𝑇𝑢 = 𝑈) → ((𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛)) ↔ (𝑇𝑊𝑈𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛))))
11 erclwwlksn.r . 2 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
1210, 11brabga 4989 1 ((𝑇𝑋𝑈𝑌) → (𝑇 𝑈 ↔ (𝑇𝑊𝑈𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913   class class class wbr 4653  {copab 4712  (class class class)co 6650  0cc0 9936  ...cfz 12326   cyclShift ccsh 13534   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  erclwwlksneqlen  26945  erclwwlksnref  26946  erclwwlksnsym  26947  erclwwlksntr  26948  eclclwwlksn1  26952
  Copyright terms: Public domain W3C validator