| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erclwwlksneq | Structured version Visualization version Unicode version | ||
| Description: Two classes are
equivalent regarding |
| Ref | Expression |
|---|---|
| erclwwlksn.w |
|
| erclwwlksn.r |
|
| Ref | Expression |
|---|---|
| erclwwlksneq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2689 |
. . . 4
| |
| 2 | 1 | adantr 481 |
. . 3
|
| 3 | eleq1 2689 |
. . . 4
| |
| 4 | 3 | adantl 482 |
. . 3
|
| 5 | simpl 473 |
. . . . 5
| |
| 6 | oveq1 6657 |
. . . . . 6
| |
| 7 | 6 | adantl 482 |
. . . . 5
|
| 8 | 5, 7 | eqeq12d 2637 |
. . . 4
|
| 9 | 8 | rexbidv 3052 |
. . 3
|
| 10 | 2, 4, 9 | 3anbi123d 1399 |
. 2
|
| 11 | erclwwlksn.r |
. 2
| |
| 12 | 10, 11 | brabga 4989 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: erclwwlksneqlen 26945 erclwwlksnref 26946 erclwwlksnsym 26947 erclwwlksntr 26948 eclclwwlksn1 26952 |
| Copyright terms: Public domain | W3C validator |