MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlksneq Structured version   Visualization version   Unicode version

Theorem erclwwlksneq 26944
Description: Two classes are equivalent regarding  .~ if both are words of the same fixed length and one is the other cyclically shifted. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlksn.w  |-  W  =  ( N ClWWalksN  G )
erclwwlksn.r  |-  .~  =  { <. t ,  u >.  |  ( t  e.  W  /\  u  e.  W  /\  E. n  e.  ( 0 ... N
) t  =  ( u cyclShift  n ) ) }
Assertion
Ref Expression
erclwwlksneq  |-  ( ( T  e.  X  /\  U  e.  Y )  ->  ( T  .~  U  <->  ( T  e.  W  /\  U  e.  W  /\  E. n  e.  ( 0 ... N ) T  =  ( U cyclShift  n ) ) ) )
Distinct variable groups:    t, W, u    t, N, u    T, n, t, u    U, n, t, u
Allowed substitution hints:    .~ ( u, t, n)    G( u, t, n)    N( n)    W( n)    X( u, t, n)    Y( u, t, n)

Proof of Theorem erclwwlksneq
StepHypRef Expression
1 eleq1 2689 . . . 4  |-  ( t  =  T  ->  (
t  e.  W  <->  T  e.  W ) )
21adantr 481 . . 3  |-  ( ( t  =  T  /\  u  =  U )  ->  ( t  e.  W  <->  T  e.  W ) )
3 eleq1 2689 . . . 4  |-  ( u  =  U  ->  (
u  e.  W  <->  U  e.  W ) )
43adantl 482 . . 3  |-  ( ( t  =  T  /\  u  =  U )  ->  ( u  e.  W  <->  U  e.  W ) )
5 simpl 473 . . . . 5  |-  ( ( t  =  T  /\  u  =  U )  ->  t  =  T )
6 oveq1 6657 . . . . . 6  |-  ( u  =  U  ->  (
u cyclShift  n )  =  ( U cyclShift  n ) )
76adantl 482 . . . . 5  |-  ( ( t  =  T  /\  u  =  U )  ->  ( u cyclShift  n )  =  ( U cyclShift  n ) )
85, 7eqeq12d 2637 . . . 4  |-  ( ( t  =  T  /\  u  =  U )  ->  ( t  =  ( u cyclShift  n )  <->  T  =  ( U cyclShift  n ) ) )
98rexbidv 3052 . . 3  |-  ( ( t  =  T  /\  u  =  U )  ->  ( E. n  e.  ( 0 ... N
) t  =  ( u cyclShift  n )  <->  E. n  e.  ( 0 ... N
) T  =  ( U cyclShift  n ) ) )
102, 4, 93anbi123d 1399 . 2  |-  ( ( t  =  T  /\  u  =  U )  ->  ( ( t  e.  W  /\  u  e.  W  /\  E. n  e.  ( 0 ... N
) t  =  ( u cyclShift  n ) )  <->  ( T  e.  W  /\  U  e.  W  /\  E. n  e.  ( 0 ... N
) T  =  ( U cyclShift  n ) ) ) )
11 erclwwlksn.r . 2  |-  .~  =  { <. t ,  u >.  |  ( t  e.  W  /\  u  e.  W  /\  E. n  e.  ( 0 ... N
) t  =  ( u cyclShift  n ) ) }
1210, 11brabga 4989 1  |-  ( ( T  e.  X  /\  U  e.  Y )  ->  ( T  .~  U  <->  ( T  e.  W  /\  U  e.  W  /\  E. n  e.  ( 0 ... N ) T  =  ( U cyclShift  n ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653   {copab 4712  (class class class)co 6650   0cc0 9936   ...cfz 12326   cyclShift ccsh 13534   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  erclwwlksneqlen  26945  erclwwlksnref  26946  erclwwlksnsym  26947  erclwwlksntr  26948  eclclwwlksn1  26952
  Copyright terms: Public domain W3C validator