MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusvobj2 Structured version   Visualization version   GIF version

Theorem eusvobj2 6643
Description: Specify the same property in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
eusvobj1.1 𝐵 ∈ V
Assertion
Ref Expression
eusvobj2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem eusvobj2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 4260 . . 3 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃𝑧{𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧})
2 eleq2 2690 . . . . . 6 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝑥 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ↔ 𝑥 ∈ {𝑧}))
3 abid 2610 . . . . . 6 (𝑥 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ↔ ∃𝑦𝐴 𝑥 = 𝐵)
4 velsn 4193 . . . . . 6 (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧)
52, 3, 43bitr3g 302 . . . . 5 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (∃𝑦𝐴 𝑥 = 𝐵𝑥 = 𝑧))
6 nfre1 3005 . . . . . . . . 9 𝑦𝑦𝐴 𝑥 = 𝐵
76nfab 2769 . . . . . . . 8 𝑦{𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵}
87nfeq1 2778 . . . . . . 7 𝑦{𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧}
9 eusvobj1.1 . . . . . . . . 9 𝐵 ∈ V
109elabrex 6501 . . . . . . . 8 (𝑦𝐴𝐵 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵})
11 eleq2 2690 . . . . . . . . 9 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝐵 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ↔ 𝐵 ∈ {𝑧}))
129elsn 4192 . . . . . . . . . 10 (𝐵 ∈ {𝑧} ↔ 𝐵 = 𝑧)
13 eqcom 2629 . . . . . . . . . 10 (𝐵 = 𝑧𝑧 = 𝐵)
1412, 13bitri 264 . . . . . . . . 9 (𝐵 ∈ {𝑧} ↔ 𝑧 = 𝐵)
1511, 14syl6bb 276 . . . . . . . 8 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝐵 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ↔ 𝑧 = 𝐵))
1610, 15syl5ib 234 . . . . . . 7 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝑦𝐴𝑧 = 𝐵))
178, 16ralrimi 2957 . . . . . 6 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → ∀𝑦𝐴 𝑧 = 𝐵)
18 eqeq1 2626 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝐵𝑧 = 𝐵))
1918ralbidv 2986 . . . . . 6 (𝑥 = 𝑧 → (∀𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑧 = 𝐵))
2017, 19syl5ibrcom 237 . . . . 5 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝑥 = 𝑧 → ∀𝑦𝐴 𝑥 = 𝐵))
215, 20sylbid 230 . . . 4 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (∃𝑦𝐴 𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵))
2221exlimiv 1858 . . 3 (∃𝑧{𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (∃𝑦𝐴 𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵))
231, 22sylbi 207 . 2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵))
24 euex 2494 . . 3 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃𝑥𝑦𝐴 𝑥 = 𝐵)
25 rexn0 4074 . . . 4 (∃𝑦𝐴 𝑥 = 𝐵𝐴 ≠ ∅)
2625exlimiv 1858 . . 3 (∃𝑥𝑦𝐴 𝑥 = 𝐵𝐴 ≠ ∅)
27 r19.2z 4060 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑥 = 𝐵) → ∃𝑦𝐴 𝑥 = 𝐵)
2827ex 450 . . 3 (𝐴 ≠ ∅ → (∀𝑦𝐴 𝑥 = 𝐵 → ∃𝑦𝐴 𝑥 = 𝐵))
2924, 26, 283syl 18 . 2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∀𝑦𝐴 𝑥 = 𝐵 → ∃𝑦𝐴 𝑥 = 𝐵))
3023, 29impbid 202 1 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wex 1704  wcel 1990  ∃!weu 2470  {cab 2608  wne 2794  wral 2912  wrex 2913  Vcvv 3200  c0 3915  {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-nul 3916  df-sn 4178
This theorem is referenced by:  eusvobj1  6644
  Copyright terms: Public domain W3C validator